МИНИСТЕРСТВО ПРИРОДНЫХ РЕСУРСОВ И ЭКОЛОГИИ РОССИЙСКОЙ ФЕДЕРАЦИИ ПРИКАЗ

от 27 мая 2022 года N 371

Об утверждении методик количественного определения объемов выбросов парниковых газов и поглощений парниковых газов

В целях реализации пункта 2 части 2 статьи 5 Федерального закона от 2 июля 2021 г. N 296-ФЗ "Об ограничении выбросов парниковых газов" (Собрание законодательства Российской Федерации, 2021, N 27, ст.5124), подпункта 5.2.37(1) пункта 5 Положения о Министерстве природных ресурсов и экологии Российской Федерации, утвержденного постановлением Правительства Российской Федерации от 11 ноября 2015 г. N 1219 (Собрание законодательства Российской Федерации, 2015, N 47, ст.6586; 2022, N 12, ст.1818),

приказываю:

1. Утвердить:

методику количественного определения объема выбросов парниковых газов согласно приложению N 1 к настоящему приказу;

методику количественного определения объема поглощений парниковых газов согласно приложению N 2 к настоящему приказу.

- 2. Признать утратившим силу приказ Минприроды России от 30 июня 2015 г. N 300 "Об утверждении методических указаний и руководства по количественному определению объема выбросов парниковых газов организациями, осуществляющими хозяйственную и иную деятельность в Российской Федерации" (зарегистрирован Минюстом России 15 декабря 2015 г., регистрационный N 40098).
 - 3. Настоящий приказ вступает в силу с 1 марта 2023 г. и действует 6 лет.

Министр А.А.Козлов

Зарегистрировано в Министерстве юстиции Российской Федерации 29 июля 2022 года, регистрационный N 69451

> Приложение N 1 к приказу Минприроды России от 27 мая 2022 года N 371

Методика количественного определения объема выбросов парниковых газов

І. Общие положения

- 1. Методика устанавливает порядок количественного определения объемов выбросов парниковых газов, для целей государственного учета выбросов парниковых газов в соответствии с Федеральным законом от 02.07.2021 N 296-ФЗ "Об ограничении выбросов парниковых газов" (Собрание законодательства Российской Федерации, 2021, N 27, ст.5124).
- 2. Методика предназначена для юридических лиц и индивидуальных предпринимателей, хозяйственная и иная деятельность которых сопровождается выбросами парниковых газов (далее -

организации).

II. Порядок количественного определения объема выбросов парниковых газов в организациях

3. Количественное определение объемов выбросов парниковых газов осуществляется в целом по организациям, либо для одного или нескольких ее структурных подразделений, объединенных в единую производственную цепочку. Во всех случаях границы количественного определения и критерии их выбора должны быть точно и однозначно определены. В случае наличия у организации филиалов или обособленных подразделений, расположенных на территории нескольких субъектов Российской Федерации, количественное определение выбросов парниковых газов осуществляется отдельно для филиалов или обособленных подразделений, расположенных на территории различных субъектов Российской Федерации.

Организации документируют границы количественного определения выбросов парниковых газов.

- 4. В границы количественного определения выбросов включаются прямые выбросы парниковых газов, определяемые в соответствии с приложением N 2 к настоящей Методике, которые происходят непосредственно от объектов организации и осуществляемых процессов.
- 5. Источники выбросов парниковых газов в границах количественного определения представляют собой производственно-технологические процессы на объектах организаций, в результате которых в атмосферу выделяются парниковые газы.

Каждая категория источников выбросов парниковых газов включает сходные производственно-технологические процессы, приводящие к возникновению выбросов парниковых газов в атмосферу, осуществляемые в границах количественного определения. Перечень категорий источников выбросов и парниковых газов приведен в приложении N 1 к настоящей Методике.

Каждый источник выбросов парниковых газов, должен быть отнесен к одной из выделенных категорий источников или исключен из количественного определения объемов выбросов парниковых газов.

Перечень источников выбросов парниковых газов актуализируется организацией в случае появления новых источников выбросов парниковых газов, изменений технологических процессов, изменения методов количественного определения выбросов парниковых газов, потенциалов глобального потепления парниковых газов и в других случаях, существенно влияющих на результаты (более 5% от суммарных годовых выбросов).

- 6. Из количественного определения выбросов парниковых газов в организации исключаются источники выбросов, которые суммарно составляют менее 5% в год от суммарных выбросов в организации, но не более 50 тыс.т СО₂ -эквивалента/год.
- 7. Количественное определение выбросов парниковых газов для категорий источников, приведенных в приложении N 1 к настоящей Методике, осуществляется с использованием методов, установленных для соответствующих категорий источников выбросов парниковых газов в приложении N 2 к настоящей Методике, включающих:

метод расчета на основе данных о деятельности и коэффициентов выбросов;

метод расчета на основе материально-сырьевого баланса;

метод расчета на основе периодических измерений выбросов парниковых газов;

метод непрерывного мониторинга выбросов парниковых газов.

8. Исходными данными для количественного определения выбросов парниковых газов являются:

данные, характеризующие интенсивность производственно-технологических процессов на источниках выбросов (например, расход топлива по видам, расход углеродсодержащих материалов,

выпуск продукции, товарно-транспортная работа и другое);

данные, характеризующие физико-химические свойства топлива, сырья, материалов, продуктов и отходов производства и потребления (далее - отходы), необходимые для определения объемов выбросов в соответствии с выбранными методами (например, содержание углерода в сырье и продукции, компонентный состав газообразного топлива и углеродсодержащих смесей, теплотворная способность топлива, плотность газов и другое);

коэффициенты выбросов, характеризующие удельный объем выбросов парниковых газов при осуществлении производственно-технологических процессов (например, коэффициенты выбросов при сжигании различных видов топлива в стационарных, мобильных или факельных установках и другое);

коэффициенты пересчета, необходимые для пересчета одних физических или энергетических единиц в другие (например, переводные коэффициенты для энергетических единиц);

потенциалы глобального потепления, используемые для приведения количества выбросов различных парниковых газов к единой величине - тоннам СО2-эквивалента.

9. В качестве источников данных для количественного определения выбросов парниковых газов в части данных о деятельности и физико-химических характеристик материальных потоков используется документированная информация, сбор и консолидация которой осуществляется в рамках системы производственного контроля. Такими источниками являются:

журналы производственного контроля;

производственно-технические отчеты;

договора и акты поставки топлива, сырья и материалов;

сертификаты топлива;

результаты регулярных лабораторных тестов;

формы статистической отчетности;

технологические регламенты;

энергопотребление в разрезе всей организации и отдельного оборудования, а также сведения об энергогенерации;

результаты инвентаризации источников выбросов парниковых газов.

10. Исходные данные, указанные в пункте 8 настоящей Методики, должны быть определены с использованием выбранных методов и источников данных и охватывать весь отчетный период.

При определении количества расходуемого сырья, топлива, материалов, производимой продукции и образующихся отходов используются:

результаты прямых инструментальных измерений расхода ресурсов в организации за отчетный период;

при отсутствии возможности использования результатов прямых инструментальных измерений расхода ресурсов в организации используются результаты расчетов на основе данных о поступлении, отгрузке на сторону и изменении запасов ресурсов в организации за отчетный период по формуле 1:

$$\mathbf{M}_{\text{расход},k,y} = \mathbf{M}_{\text{пост},k,y} - \mathbf{M}_{\text{оттр},k,y} + \mathbf{M}_{\text{запас},k,\text{нач.},y} - \mathbf{M}_{\text{запас},k,\text{кон.},y},$$
 (1) где,

 ${
m M}_{{
m pacxog},k,v}$ - количество израсходованного k-ресурса в организации за период у, т или тыс.м 3 ;

 ${
m M}_{
m mocr,k,v}$ - количество поступившего в организацию k-ресурса за период у, т или тыс.м 3 ;

 ${
m M}_{{
m orrp},k,y}$ - количество отгруженного на сторону k-ресурса за период у, т или тыс.м 3 ;

 ${
m M}_{{
m sanac}\,,k,\,{
m koh}\,,v}$ - остаток k-ресурса в организации на конец периода у, т или тыс.м 3 ;

 $M_{\text{запас},k,\text{нач},y}$ - остаток k-ресурса в организации на начало периода у (конец предыдущего периода), т или тыс.м 3 .

При определении коэффициентов выбросов, содержания углерода и физико-химических характеристик расходуемого сырья, топлива, материалов, производимой продукции и образующихся отходов, необходимых для количественного определения выбросов парниковых газов, используются данные, обеспечивающие их наименьшую неопределенность.

К источникам данных при определении коэффициентов выбросов, содержания углерода и физико-химических характеристик расходуемого сырья, топлива, материалов, производимой продукции и образующихся отходов относятся результаты регулярных лабораторных исследований за отчетный период.

При отсутствии лабораторных исследований за отчетный период используются данные поставщиков ресурсов, указанные в сертификатах качества, при отсутствии данных поставщиков ресурсов используются данные, приведенные в приложении N 2 к настоящей Методике.

11. Количественное определение объема выбросов парниковых газов осуществляется организациями по источникам или группам источников выбросов парниковых газов с использованием выбранных методов в формате, обеспечивающем возможность воспроизведения расчетов выбросов.

Группы источников выбросов парниковых газов выделяются для целей количественного определения выбросов и объединяют однотипные источники выбросов в организации, относящиеся к одной категории источников согласно приложению N 1 к настоящей Методике.

12. Суммарные выбросы парниковых газов по категориям источников в целом рассчитываются с учетом потенциалов глобального потепления парниковых газов и выражаются в ${\tt CO}_2$ -эквиваленте. Расчет выполняется по формуле 2:

$$E_{\text{CO2e, y}} = \sum_{i=1}^{n} \left(E_{i,y} \times \text{GWP}_{i} \right), \quad (2)$$

где,

 $E_{{
m CO2e.v}}$ - выбросы парниковых газов в ${
m CO}_2$ -эквиваленте за период у, т ${
m CO}_2$ -эквивалента;

 $E_{i,y}$ - выбросы і-парникового газа за период у, т;

 ${\rm GWP}_i$ - потенциал глобального потепления (GWP - global warming potential) - коэффициент пересчета величин выбросов і-парникового газа в эквивалент диоксида углерода (на горизонте 100 лет), т ${\rm CO}_2$ -эквивалента/т;

n - количество видов выбрасываемых парниковых газов;

Значения коэффициентов пересчета величин выбросов і-парникового газа в эквивалент диоксида углерода (на горизонте 100 лет) (GWPi) используются согласно перечню парниковых газов, в отношении которых осуществляется государственный учет выбросов парниковых газов и ведение кадастра парниковых газов, утвержденному распоряжением Правительства Российской Федерации от 22.10.2021 N 2979-р (Собрание законодательства Российской Федерации, 2021, N 44, ст.7456).

Приложение N 2 к приказу Минприроды России от 27 мая 2022 года N 371

Методика количественного определения объема поглощений парниковых газов

1. Методика устанавливает порядок расчета объема поглощений парниковых газов:

землями лесного фонда (в части лесных земель);

землями, переведенными в земли лесного фонда (в части лесных земель);

землями сельскохозяйственного назначения (в части сельскохозяйственных угодий) (далее - сельскохозяйственные угодья);

землями, переведенными в сельскохозяйственные угодья;

землями водного фонда (в части водно-болотных угодий) (далее - водно-болотные угодья);

землями, переведенными в водно-болотные угодья;

землями населенных пунктов;

землями, переведенными в земли населенных пунктов, земли особо охраняемых территорий и объектов и земли промышленности, энергетики, транспорта, связи, радиовещания, телевидения, информатики, земли для обеспечения космической деятельности, земли обороны, безопасности и земли иного специального назначения (далее - земли специального назначения).

- 1.1. Количественное определение объема поглощений парниковых газов, осуществляется в соответствии с Приложением к настоящей Методике.
- 1.2. В настоящей Методике объем поглощения парниковых газов рассматривается как баланс между объемом выбросов парниковых газов из источников и объемом их поглощения, происходящими в окружающей среде в результате природных и антропогенных процессов.
- 2. При определении объема поглощения парниковых газов, полученного в результате реализации проектов, направленных на лесовосстановление, лесоразведение и рекультивацию земель, объемы выбросов ${\rm CO}_2$, ${\rm CH}_4$, ${\rm N}_2{\rm O}$, полученных в результате сжигания ископаемого топлива при реализации проекта (транспорт, оборудование, машины), сжигании органического вещества при пожарах на территории реализации проекта, а также при осушении земель на территории реализации проекта, вычитаются из полученных в результате реализации проекта объема поглощения.

Учет пулов углерода в проектах, направленных на лесовосстановление, лесоразведение и рекультивацию земель, указан в таблице 1.

Таблица 1. Учет пулов углерода в проектах, направленных на лесовосстановление, лесоразведение и рекультивацию земель.

Учет в проекте
7 101 6

Надземная древесная биомасса	Подлежит учету
Подземная древесная биомасса	При консервативных оценках исключается, однако исключение этого пула занижает оценку поглощения ${ m CO}_2$ древостоями
Недревесная биомасса (травяно-кустарничковый и мохово-лишайниковый ярусы)	При консервативной оценке этот пул не учитывается в связи с небольшим вкладом в поглощение ${{\Bbb CO}}_2$
Мертвая древесина	Включается
Заготовленная древесина	Подлежит учету
Подстилка	Пул вносит небольшой вклад и при консервативных оценках учитывается
Органическое вещество почв	При консервативных оценках не учитывается, однако исключение этого пула занижает поглощение СО ₂ при создании насаждений на нелесных землях

Приложение N 1 к методике количественного определения объема выбросов парниковых газов, утвержденной приказом Миприроды России от 27 мая 2022 года N 371

Категории источников выбросов и парниковые газы

N	Категория источников выбросов парниковых газов	Парниковый газ
1	Стационарное сжигание газообразного, жидкого и твердого топлива.	${\rm CO}_2$
	- газ горючий природный (естественный);	
	- газ сжиженный:	
	- пропан и бутан сжиженные, газы углеводородные и их смеси сжиженные;	
	- газ попутный нефтяной (нефтяные месторождения);	
	- газ попутный нефтяной (газоконденсатные месторождения);	
	- газ попутный нефтяной (газовые месторождения);	
	- газ горючий искусственный доменный;	
	- кокс металлургический;	
	- кокс нефтяной и сланцевый;	
	- мазут (мазут топочный);	
	- уголь, за исключением бурого;	

	- уголь бурый;	
	- торф топливный, брикеты и полубрикеты торфяные;	
	- дизельное топливо.	
2	Сжигание на факельных установках.	CO ₂ , CH ₄
	- природный газ;	_ ,
	- попутный нефтяной газ.	
3	Проведение технологических операций, осуществляемых при разведке, добыче, переработке, подготовке, транспортировке, хранении нефти и газа.	CO ₂ , CH ₄
	- добыча нефти и газового конденсата;	
	- транспортировка нефти по магистральным трубопроводам;	
	- нефтепереработка;	
	- добыча природного газа;	
	- транспортировка природного газа;	
	- подготовка природного газа;	
	- хранение природного газа;	
	- газораспределение.	
4	Проведение технологических операций, осуществляемых при добыче, обработке, транспортировке и хранении угля.	CO ₂ , CH ₄
	- добыча угля подземным способом (высокая газоносность шахт);	
	- добыча угля подземньм способом;	
	- последующие операции при добыче угля подземным способом.	
5	Черная металлургия.	CO ₂ , CH ₄
	- производство кокса;	
	- производство агломерата;	
	- производство железорудных окатышей;	
	- производство железа прямого восстановления;	
	- производство чугуна;	
	- производство кислородно-конвертерной и мартеновской стали;	
	- производство электростали.	
5.1	Производство ферросплавов.	CO ₂
	- феррохром;	_
	- металлический кремний;	
	- ферросилиций;	
	- ферромарганец;	

	- ферромолибден;	
	- ферроникель;	
	- ферротитан;	
	- ферровольфрам;	
	- феррованадий;	
	- другие виды ферросплавов.	
6	Цветная металлургия.	CO ₂ , C ₂ F ₆ , CF ₄
	- производство свинца первичного;	
	- производство цинка;	
	- производство других металлов.	
7	Производство минеральных материалов.	CO ₂
	- производство цемента;	
	- производство извести;	
	- производство всех видов стекла;	
	- производство керамических изделий.	
8	Химическая промышленность.	SF_6 , CHF_3 , CO_2 , N_2O
	- производство аммиака;	
	- производство азотной кислоты;	
	- производство капролактама;	
	- производство глиоксаля;	
	- производство карбида кальция;	
	- производство карбида кремния;	
	- производство диоксида титана;	
	- производство кальцинированной соды;	
	- производство водорода;	
	- производство хлордифторметана (ГХФУ-22);	
	- производство гексафторида серы (SF6);	
	- производство других фторсодержащих соединений.	
9	Нефтехимическое производство и производство сажи.	$\mathrm{CH_4},\mathrm{CO_2}$
	- производство метанола;	
	- производство этилена;	
	- производство этилендихлорида и хлористого винила;	
	- производство акрилонитрила;	
	- производство сажи (углерод технический).	

10	Сжигание топлива в транспорте.	CO ₂
	- авиационный бензин;	
	- топливо для реактивных двигателей;	
	- дизельное топливо (железнодорожный транспорт);	
	- бензин (А70 (АИ-80), АИ-92, АИ-93, АИ-95, АИ-98) в автотранспорте;	
	- дизельное топливо (летнее, зимнее, арктическое) в автотранспорте;	
	- сжиженный нефтяной газ (пропан, изобутан, н-бутан);	
	- газ сжиженный (морской и внутренний водный транспорт);	
	- мазутное топливо (мазут флотский);	
	- дизельное топливо (морской и внутренний водный транспорт);	
	- компримированный природный газ.	
11	Обработка, сжигание и захоронение твердых отходов.	CO ₂ , N ₂ O, CH ₄
	- компостирование (за исключением отходов животноводства (навоз и помет);	
	- анаэробное сбраживание (за исключением отходов животноводства (навоз и помет);	
	- сжигание твердых коммунальных отходов (небиологическая фракция);	
	- захоронение отходов;	
	- сжигание нефтесодержащих отходов.	
12	Целлюлозно-бумажное производство.	CO ₂ , N ₂ O, CH ₄
	- древесно-подготовительное производство;	
	- производство сульфатной целлюлозы;	
	- производство сульфитной целлюлозы;	
	- производство механических видов древесной массы;	
	- производство бумаги, в том числе с использованием регенерированного волокна из макулатуры;	
	- производство картона, в том числе с использованием регенерированного волокна из макулатуры;	
	- производственные процессы вспомогательных производств (приготовление химикатов для отбелки, регенерация известкового шлама, очистка сточных вод, захоронение отходов).	

Приложение N 2 к методике количественного определения объема выбросов парниковых газов, утвержденной приказом Минприроды России от 27 мая 2022 года N 371

Методы расчета количественного определения объема выбросов парниковых газов по категориям источников

- 1. Стационарное сжигание топлива
- 1.1. Данная категория источников выбросов парниковых газов включает выбросы СО2 в атмосферу, возникающие в результате сжигания всех видов ископаемого газообразного, жидкого и твердого топлива в котельных агрегатах, турбинах, печах, инсинераторах и других теплотехнических агрегатах, осуществляемого с целью выработки тепловой и (или) электрической энергии для собственных нужд организаций или отпуска потребителям, а также для осуществления иных технологических операций.

В случае, если разделить расход топлива между источниками данной категории и источниками категории "Черная металлургия" невозможно, выбросы от топлива допустимо полностью отнести в одну из этих двух категорий.

- 1.2. Данная категория источников выбросов не включает выбросы парниковых газов от стационарного сжигания топлива в факельных установках, от сжигания биогаза, биомассы и продуктов ее переработки, утечек, связанных с распределением топлива, выбросы при аварийных и чрезвычайных ситуациях.
- 1.3. Выбросы ${\rm CH_4}$ и ${\rm N_2O}$, потенциально возникающие при стационарном сжигании топлива, не учитываются.
- 1.4. Количественное определение выбросов ${\rm CO}_2$ от стационарного сжигания топлива выполняется расчетным методом по отдельным источникам, группам источников или организации в целом по формуле (1.1):

$$E_{CO_{2,y}} = \sum_{j=1}^{n} \left(FC_{j,y} \times EF_{CO_{2,j,y}} \times OF_{j,y} \right), \quad (1.1)$$

где:

 ${\rm E}_{{\rm CO}_{2,y}}$ - выбросы ${\rm CO}_2$ от стационарного сжигания топлива за период у, т ${\rm CO}_2$;

 $\mathrm{FC}_{\mathfrak{f},\mathfrak{F}}$ - расход топлива ј за период у, тыс.м 3 , т, т у.т. или ТДж;

 $\mathrm{EF}_{\mathrm{CO2},j,y}$ - коэффициент выбросов CO_2 от сжигания топлива ј за период у, т CO_2 /ед.;

 $\bigcirc F_{j,v}$ - коэффициент окисления топлива j, доля;

ј - вид топлива, используемого для сжигания;

- n количество видов топлива, используемых за период у.
- 1.5. Организации должны учитывать расход всех видов газообразного, жидкого и твердого топлива, как природного, так и искусственного происхождения, сжигаемого в стационарных источниках, включенных в границы количественного определения. Расход топлива, используемого для стационарного сжигания (${}^{\rm FC}_{\rm j,y}$), определяется организациями для каждого вида топлива по отдельным источникам, группам источников или организации в целом.

Расход топлива (${^{FC}}_{i,v}$) должен быть определен в единицах измерения (т, тыс.м 3 , т у.т. или

ТДж) соответствующих применяемому коэффициенту выбросов ($^{EF}_{CO2,j,y}$) (т $^{CO}_2$ /т, т $^{CO}_2$ /тыс.м 3 , т $^{CO}_2$ /т у.т. или т $^{CO}_2$ /ТДж). Источниками данных о расходе топлива могут являться акты от поставщика, бухгалтерские отчеты за отчетный период, технические отчеты производства.

Если для расчетов выбросов используются значения коэффициентов выбросов, приведенные в таблице 1.1 настоящего приложения, расход топлива должен быть определен в энергетическом эквиваленте (т у.т. или ТДж) по формулам (1.2a, 1.2б):

$$FC_{i,v} = FC'_{i,v} \times k_{i,v}$$
, (1.2a)

где:

 ${
m FC}_{j,y}$ - расход топлива j в энергетическом эквиваленте за период y, т y.т.;

 $\mathrm{FC}_{j,y}^{'}$ - расход топлива ј в натуральном выражении за период у, т или тыс.м 3 ;

 $k_{j,y}$ - коэффициент перевода в тонны условного топлива, т у.т./т, т у.т./тыс.м 3 .

$$FC_{j,y} = FC_{j,y} \times NCV_{j,y} \times 10^{-3}$$
, (1.26)

где:

 ${FC}_{i,v}$ - расход топлива ј в энергетическом эквиваленте за период у, ТДж;

 $\mathrm{FC}_{\mathrm{i},\mathrm{V}}^{'}$ - расход топлива ј в натуральном выражении за период у, т или тыс.м 3 ;

 $\mathrm{NCV}_{j,y}$ - низшая теплота сгорания топлива ј за период у, МДж/кг, МДж/м 3 .

Значение низшей теплоты сгорания топлива или коэффициент перевода в тонны условного топлива (${
m NCV}_{j,y}$) принимается по фактическим данным организации или поставщика топлива за отчетный период, а в случае отсутствия или нерепрезентативности таких данных, с использованием значений, приведенных в таблице 1.1 настоящего приложения.

1.6. Коэффициенты выбросов CO_2 от сжигания топлива ($EF_{CO2,j,y}$) рассчитываются на основе фактических данных о компонентном составе газообразного топлива по формулам (1.3) или (1.4) и содержании углерода в твердом и жидком топливе по формуле (1.5):

$$EF_{CO2, j, y} = \sum_{i=1}^{n} (W_{i, j, y} \times n_{C, i}) \times \rho_{CO2} \times 10^{-2},$$
 (1.3)

где:

 ${
m EF}_{{
m CO}_2,j,y}$ - коэффициент выбросов ${
m CO}_2$ от сжигания газообразного топлива ј за период у, т ${
m CO}_2$ /тыс.м 3 ;

 $\mathbb{W}_{i,\,j,y}$ - объемная доля (молярная доля) і-компонента газообразного топлива ј за период у, % об. (% мол.);

 ${
m n_{Ci}}$ - количество атомов углерода в молекуле і-компонента газообразного топлива;

 ρ_{CO2} - плотность диоксида углерода (CO_2), кг/м 3 (принимается по таблице 1.2).

При проведении расчетов за год в качестве условий измерений принимается среднегодовая температура.

$$EF_{CO2,j,y} = \sum_{i=1}^{n} \left(\frac{W_{i,j,y} \times n_{C,i} \times 44,011}{M_{i}} \right) \times \rho_{j,y} \times 10^{-2}, \quad (1.4)$$

где:

 $EF_{CO2,j,y}$ - коэффициент выбросов CO_2 от сжигания газообразного топлива ј за период у, т CO_2 /тыс.м 3 ;

 $\mathbb{W}_{i,j,\mathbb{V}}$ - массовая доля і-компонента газообразного топлива j за период y, % мас.;

 ${
m n_{C\,i}}$ - количество молей углерода на моль і-компонента газообразного топлива;

 $\mathbf{M_i}$ - молярная масса і-компонента газообразного топлива, г/моль;

 $\rho_{i,v}$ - плотность газообразного топлива ј за период у, кг/м 3 ;

44,011 - молярная масса СО₂.

$$EF_{CO2,i,v} = W_{C,i,v} \times 3,664$$
, (1.5)

где:

 $\mathrm{EF_{CO2,j,v}}$ - коэффициент выбросов $\mathrm{CO_2}$ от сжигания j-топлива за период у, т $\mathrm{CO_2}$ /т;

 $\mathbb{W}_{\mathbb{C},j,y}$ - содержание углерода в ј-топливе за период у, т С/т;

3,664 - коэффициент перевода, т CO_2 /т С.

Содержание углерода в топливе рассчитывается для кокса (сухого) по формуле (1.6), для других видов топлива - по формуле (1.7):

$$W_{C, \text{kokc}, y} = \left[\frac{100 - \left(A_{\text{kokc}, y} + V_{\text{kokc}, y} + S_{\text{kokc}, y} \right)}{100} \right], \quad (1.6)$$

где:

 $W_{C,\kappa\kappa\kappa_{c},v}$ - содержание углерода в коксе за период у, т С/т;

 $\mathbb{A}_{\mathtt{KOKC},\,\mathtt{y}}$ - содержание золы в коксе за период у, %;

 $V_{\mathtt{KOKC},\, \mathtt{V}}$ - содержание летучих в коксе за период у, %;

 $\mathbb{S}_{\mathtt{KOKC},\, \mathtt{V}}$ - содержание серы в коксе за период у, %.

$$W_{C,j,y} = \frac{EF_{CO_{2,j,y}}}{3.664},$$
 (1.7)

где:

 $\mathbb{W}_{\mathbb{C},j,y}$ - содержание углерода в j-топливе за период у, т C/т, т C/тыс.м 3 ;

 $\mathrm{EF}_{\mathrm{CO}2,j,y}$ - коэффициент выбросов CO_2 от сжигания топлива ј за период у, т CO_2 /т, т CO_2 /тыс.м 3 ;

3,664 - коэффициент перевода, т СО₂ /т С.

При отсутствии репрезентативных фактических данных по компонентному химическому составу газообразного топлива и содержанию углерода в твердом и жидком топливе за отчетный период используются значения коэффициентов выбросов и содержания углерода для соответствующих видов топлива, представленные в таблице 1.1 настоящего приложения.

Организации должны использовать коэффициенты выбросов для рядовых углей соответствующих месторождений, а при отсутствии необходимых данных о месторождениях потребляемых углей или отсутствии необходимых данных по месторождениям в таблице 1.1 настоящего приложения, использовать значения для соответствующих видов углей (каменный уголь, бурый уголь, антрацит).

При отсутствии необходимых данных о содержании углерода в настоящей Методике, в соответствии с пунктом 9 настоящей Методики, допускается использование справочных данных из других источников информации с обязательной ссылкой на источник информации.

1.7. Коэффициент окисления топлива ($\bigcirc F_{j,\,y}$) принимается для всех видов газообразного и жидкого топлива по умолчанию равным 1,0 (соответствует 100% окислению топлива) независимо от применяемых процессов стационарного сжигания топлива, кроме сжигания углеводородных газов в факелах.

Коэффициент окисления твердого топлива (ОГј,у) принимается:

на основании среднегодовых фактических данных о величине механического недожога;

в соответствии с паспортными или гарантийными данными завода-изготовителя или поставщика котла;

по умолчанию равным 1,0 при отсутствии фактических данных о потерях тепла вследствие механической неполноты сгорания твердого топлива и о содержании углерода в твердых продуктах сгорания топлива (шлаке и золе).

При наличии фактических данных о потерях тепла вследствие механической неполноты сгорания твердого топлива, установленной на основе инструментальных измерений содержания горючих в продуктах сгорания топлива (шлак и зола), расчет коэффициента окисления (${}^{\bigcirc}F_{j,\,y}$) выполняется по формуле (1.8):

$$OF_{j,y} = \frac{(100 - q_4)}{100},$$
 (1.8)

где:

 $\bigcirc F_{j,\, \mathbb{V}}$ - коэффициент окисления твердого топлива j, доля;

 ${
m q}_4$ - потери тепла вследствие механической неполноты сгорания топлива, %.

При наличии фактических данных о содержании углерода в твердых продуктах сгорания топлива (шлаке и золе) коэффициент окисления для твердого топлива рассчитывается по формуле (1.9):

$$\text{OF}_{j,\,y} = 1 - \frac{\text{CC}_{\text{A},\,y}}{\text{CC}_{\text{F},\,y}} \;, \quad \text{ (1.9)} \label{eq:off_special}$$

где:

 $\bigcirc F_{i,\,y}$ - коэффициент окисления твердого топлива j, доля;

 ${\rm CC}_{{\rm A.v}}$ - содержание углерода в золе и шлаке, образованными за период у, т;

 ${}^{\rm CC}_{{\sf F},\,{}_{{\sf V}}}$ - содержание углерода в твердом топливе, израсходованном за период у, т.

1.8. Выбросы от стационарного сжигания промышленных газов (доменного, конвертерного, коксового, сухого газа, нефтеперерабатывающих предприятий) должны учитываться в рамках категории "стационарного сжигание топлива" в том случае, если они сжигаются в филиале или обособленном подразделении, отдельном от предприятия, на котором производятся эти газы. В случае, если эти газы сжигаются на внутреннем объекте промышленного предприятия, на котором производятся эти газы, то соответствующие выбросы должны учитываться в рамках категорий, к которым относится основной технологический процесс, на котором производятся эти газы.

Содержание углерода в коксующихся углях определяется по формуле (1.10):

$$W_{C, \text{kokc.yrom}, y} = (100 - A_{\text{kokc.yrom}, y} - 0.47 * V_{\text{kokc.yrom}, y}) / 100$$
, (1.10)

где:

 $W_{C, \text{кокс.уголь}, y}$ - содержание углерода в коксующихся углях за период у, т С/т;

 $A_{\text{кокс. утоль, у}}$ - содержание золы в коксующихся углях за период у, %;

 $V_{\text{кокс. утоль v}}$ - содержание летучих в коксующихся углях за период у, %.

Таблица 1.1 Коэффициенты перевода расхода топлива в энергетические единицы, коэффициенты выбросов ${\tt CO}_2$ и содержание углерода по видам топлива

	Коэффициенты перевода в тонны условного топлива и энергетические единицы ($^{ m NCV}_{ m j,y}$)	Коэффициенты выбросов $(^{ ext{EF}}_{ ext{CO 2},j,y})$	Содержание углерода (^W C,j,y)
--	---	--	---

	Единица измерения	т у.т./т (тыс.м ³)	ТДж/тыс.т (млн м ³)	т СО ₂ /т у.т.	т СО ₂ /тдж	т С/т у.т.	т С/ТДж
Жидкие топлива (нефть и про	одукты переработ	ки нефти)			•	•	
Нефть, включая промысловый газоконденсат	тонна	1,430	41,9	2,15	73,3	0,59	20,0
Природный газовый конденсат	тонна	1,508	44,2	1,88	64,2	0,51	17,5
Газ попутный нефтяной (нефтяные месторождения)	тыс.м ³	1,154	33,8	1,77	60,4	0,48	16,5
Газ попутный нефтяной (газоконденсатные месторождения)	тыс.м ³	1,154	33,8	1,64	55,9	0,45	15,3
Газ попутный нефтяной (газовые месторождения)	тыс.м ³	1,154	33,8	1,62	55,2	0,44	15,1
Бензин автомобильный	тонна	1,490	43,7	2,03	69,3	0,55	18,9
Бензин авиационный	тонна	1,490	43,7	2,05	70,0	0,56	19,1
Авиационный керосин	тонна	1,470	43,1	2,10	71,5	0,57	19,5
Керосин	тонна	1,470	43,1	2,11	71,9	0,58	19,6
Топливо дизельное	тонна	1,450	42,5	2,17	74,1	0,59	20,2
Мазут топочный	тонна	1,370	40,2	2,27	77,4	0,62	21,1
Мазут флотский	тонна	1,430	41,9	2,27	77,4	0,62	21,1
Топливо печное бытовое	тонна	1,450	42,5	2,27	77,4	0,62	21,1
Газ сжиженный нефтяной	тонна	1,570	46,0	1,85	63,1	0,50	17,2
Другие моторные топлива	тонна	1,470	43,1	2,11	71,9	0,58	19,6
Нефтебитум	тонна	1,350	39,6	2,37	80,7	0,65	22,0
Этан	тонна	1,583	46,4	1,81	61,6	0,49	16,8
Пропан	тонна	1,570	46,0	1,87	63,8	0,51	17,4
Бутан	тонна	1,570	46,0	1,82	62,0	0,50	16,9
Пропан и бутан сжиженные, газы углеводородные и их смеси сжиженные	тонна	1,570	46,0	1,85	63,2	0,51	17,3
Лигроин	тонна	1,536	45,0	2,15	73,3	0,59	20,0
Смазочные материалы	тонна	1,372	40,2	2,15	73,3	0,59	20,0
Газ нефтеперерабатывающих предприятий сухой	тонна	1,500	44,0	1,30	44,4	0,35	12,1
Кокс нефтяной и сланцевый	тонна	1,080	31,7	2,86	97,5	0,78	26,6

			•	,	1		
Другие нефтепродукты	тонна	1,430	41,9	2,15	73,3	0,59	20,0
Твердые топлива (уголь и пр	одукты переработ	ки угля)					
Рядовой уголь месторождений:							
уголь донецкий	тонна	0,876	25,7	2,65	90,2	0,72	24,6
уголь кузнецкий	тонна	0,867	25,4	2,69	91,9	0,73	25,1
уголь карагандинский	тонна	0,726	21,3	2,76	94,2	0,75	25,7
уголь подмосковный	тонна	0,335	9,82	2,79	95,0	0,76	25,9
уголь воркутинский	тонна	0,822	24,1	2,71	92,6	0,74	25,3
уголь интинский	тонна	0,649	19,0	2,73	93,1	0,75	25,4
уголь челябинский	тонна	0,552	16,2	2,78	94,9	0,76	25,9
уголь свердловский	тонна	0,330	9,67	2,76	94,2	0,75	25,7
уголь башкирский	тонна	0,264	7,74	2,76	94,2	0,75	25,7
уголь нерюнгринский	тонна	0,987	28,9	2,76	94,2	0,75	25,7
уголь якутский	тонна	0,751	22,0	2,76	94,2	0,75	25,7
уголь черемховский	тонна	0,752	22,0	2,75	94,0	0,75	25,7
уголь азейский	тонна	0,483	14,2	2,75	93,9	0,75	25,6
уголь читинский	тонна	0,483	14,2	2,90	98,9	0,79	27,0
уголь гусиноозерский	тонна	0,506	14,8	2,78	94,9	0,76	25,9
уголь хакасский	тонна	0,727	21,3	2,77	94,4	0,76	25,8
уголь канско-ачинский	тонна	0,516	15,1	2,87	98,1	0,78	26,8
уголь тувинский	тонна	0,906	26,6	2,76	94,2	0,75	25,7
уголь тунгусский	тонна	0,754	22,1	2,76	94,2	0,75	25,7
уголь магаданский	тонна	0,701	20,5	2,73	93,1	0,75	25,4
уголь арктический (шпицбергенский)	тонна	0,669	19,6	2,76	94,2	0,75	25,7
уголь норильский	тонна	0,761	22,3	2,76	94,2	0,75	25,7
уголь огоджинский	тонна	0,447	13,1	2,76	94,2	0,75	25,7
уголь камчатский	тонна	0,323	9,47	2,73	93,1	0,75	25,4
уголь Приморья	тонна	0,506	14,8	2,73	93,1	0,75	25,4
уголь экибастузский	тонна	0,628	18,4	2,77	94,6	0,76	25,8
уголь алтайский	тонна	0,782	22,9	2,76	94,2	0,75	25,7
уголь тугнуйский	тонна	0,692	20,3	2,76	94,2	0,75	25,7

уголь прочих месторождений	тонна	0,768	22,5	2,76	94,2	0,75	25,7
уголь импортный	тонна	0,768	22,5	2,76	94,2	0,75	25,7
Антрацит	тонна	0,911	26,7	2,88	98,3	0,79	26,8
Коксующийся уголь	тонна	0,962	28,2	2,77	94,6	0,76	25,8
Каменный уголь	тонна	0,768	22,5	2,77	94,6	0,76	25,8
Бурый уголь	тонна	0,467	13,7	2,96	101,0	0,81	27,6
Сланцы горючие	тонна	0,300	8,79	3,14	107,0	0,86	29,2
Брикеты угольные	тонна	0,605	17,7	2,86	97,5	0,78	26,6
Кокс металлургический	тонна	0,990	29,0	3,14	107,0	0,86	29,2
Смола каменноугольная коксохимических заводов	тонна	1,300	38,1	2,37	80,7	0,65	22,0
Газы искусственные горючие)	•		•			
Газ горючий искусственный коксовый	тыс.м ³	0,570	16,7	1,30	44,4	0,35	12,1
Газ горючий искусственный доменный	тыс.м ³	0,143	4,19	7,62	260,0	2,08	71,0
Газ горючий искусственный конвертерный	тыс. м ³	0,240	7,06	5,33	182	0,35	49,6
Природный газ			- 1	•	- 1	"	ı
Газ горючий природный (естественный)	тыс.м ³	1,129	33,08	1,59	54,4	0,43	14,8
Газ компримированный	тыс.м ³	1,129	33,08	1,59	54,4	0,43	14,8
Газ сжиженный	тонна	1,570	46,0	1,65	56,4	0,45	15,4
Торф							
Торф топливный	тонна	0,340	10,0	3,11	106,0	0,85	28,9
Брикеты и полубрикеты торфяные	тонна	0,600	17,6	3,11	106,0	0,85	28,9
Отходы			·	·		·	
Отходы бытовые (небиологическая фракция)	тонна	0,341	10,0	2,69	91,7	0,73	25,0
Прочие горючие отходы технологических производств	тонна у.т.	1,000	29,3	4,19	143,0	1,14	39,0
Нефтяные отходы	тонна	1,372	40,2	2,12	72,2	0,58	19,7
Биотоплива	1			ı	1		T.
Биотоплива							

Биобензин	тонна	0,921	27,0	2,07	70,8	0,57	19,3
Био-дизтопливо	тонна	0,921	27,0	2,07	70,8	0,57	19,3
Другие виды жидкого биотоплива	тонна	0,935	27,4	2,33	79,6	0,63	21,7

1.9. Приведенные значения рядового угля месторождений в таблице 1.1 учитывают неполное окисление углерода твердого топлива при сжигании, поэтому при их использовании для расчета выбросов по формуле (1.1) коэффициент окисления (${}^{\bigcirc}F_{i,\,v}$) принимается равным 1.

Представленные в таблице 1.1 данные обеспечивают неопределенность коэффициентов выбросов или параметров оценки 7%.

Таблица 1.2 - Плотность диоксида углерода и метана для различных условий измерения

N	Условия измерений	· · · · · _	Плотность метана (${ m CH_4}$), кг/м 3
1	273,15 K (0°C); 101,325 кПа	1,9768	0,7170
2	288,15 K (15°C); 101,325 кПа	1,8738	0,6797
3	293,15 K (20°C); 101,325 кПа	1,8393	0,6680

2. Сжигание в факелах

- ${
 m CH_4}$, возникающие в результате сжигания на факельных установках природного газа, попутного нефтяного газа, шахтного метана и других углеводородных смесей от продувки скважин, дегазации и вентиляции угольных шахт, опорожнения и продувки технологического оборудования и трубопроводов, утилизации некондиционных углеводородных смесей, нейтрализации выбросов загрязняющих веществ и других технологических операций. К данной категории также относятся выбросы от сжигания топливного газа на факельных установках для поддержания дежурного горения.
- 2.2. В данную категорию источников выбросов парниковых газов не включаются выбросы парниковых газов от стационарного сжигания углеводородных смесей, осуществляемого для энергетических и технологических целей, а также выбросы при аварийных и чрезвычайных ситуациях. Выбросы от стационарного сжигания топлива, за исключением сжигания в факелах, определяются в соответствии с пунктом 1 "Стационарное сжигание топлива" настоящего приложения.
- 2.3. Выбросы $N_2\mathbb{O}$, потенциально возникающие при сжигании углеводородных смесей в факелах, не учитываются.
- 2.4. Количественное определение выбросов парниковых газов от сжигания на факельных установках углеводородных смесей выполняется по формуле (2.1). При использовании в организации нескольких факельных установок с различной эффективностью сжигания углеводородных смесей расчет выполняется для каждой установки отдельно. Также расчет выполняется отдельно для каждой углеводородной смеси (включая топливный газ) при их сжигании на одной установке, если данные смеси имеют различный компонентный состав.

$$E_{i,y} = \sum_{j=1}^{n} (FC_{j,y} \times EF_{i,j,y}),$$
 (2.1)

где:

 $E_{i,y}$ - выбросы і-парникового газа от сжигания углеводородных смесей на факельной установке за период у, т;

 $\mathrm{FC}_{\mathrm{j,y}}$ - расход j-углеводородной смеси на факельной установке за период у, тыс.м 3 (т);

 $EF_{i,j,y}$ - коэффициент выбросов і-парникового газа от сжигания ј-углеводородной смеси на факельной установке за период у, т/тыс.м 3 (т/т);

- ј вид углеводородной смеси;
- n количество видов углеводородных смесей, сжигаемых на факельной установке.
- 2.5. Расход углеводородной смеси (${}^{\mathrm{FC}}_{\mathrm{j},\mathrm{y}}$) на факельных установках в организации должен включать все виды сжигаемых углеводородных смесей за отчетный период, а также расход топлива, используемого на поддержание горения факела.
- 2.6. Коэффициент выбросов CO_2 и CH_4 от сжигания углеводородной смеси на факельной установке ($EF_{i,j,v}$) рассчитывается по формулам (2.2-2.5).

Расчет коэффициента выбросов СО2:

$$EF_{CO2,j,y} = \left(W_{CO2,j,y} + \sum_{i=1}^{n} \left(W_{i,j,y} \times n_{C,i}\right) \times \left(1 - CF_{j,y}\right)\right) \times \rho_{CO2} \times 10^{-2}, \quad (2.2)$$

где:

 $\mathrm{EF}_{\mathrm{CO2,j,y}}$ - коэффициент выбросов CO_2 от сжигания j-углеводородной смеси на факельной установке за период у, т CO_2 /тыс.м 3 ;

 $\mathbb{W}_{\mathbb{C}O2,\,j,\mathbb{V}}$ - содержание $\mathbb{C}O_2$ в j-углеводородной смеси за период у, % об. (% мол.);

 $\mathbb{W}_{i,\,j,y}$ - содержание і-компонента (кроме $\,\mathbb{CO}_2\,$) в j-углеводородной смеси, % об. (% мол.);

 $n_{C\,i}$ - количество молей углерода на моль і-компонента углеводородной смеси;

 ${}^{CF}_{j,y}$ - коэффициент недожога j-углеводородной смеси на факельной установке за период у, доля;

 $ho_{{
m CO}2}$ - плотность диоксида углерода (${
m CO}_2$), кг/м 3 (принимается по таблице 1.2).

$$EF_{CO2,j,y} = \left(W_{CO2j,y} + \sum_{i=1}^{n} \left(\frac{W_{i,j,y} \times n_{C,i} \times 44,011}{M_{i}}\right) \times \left(1 - CF_{j,y}\right)\right) \times \rho_{j,y} \times 10^{-2}, \quad (2.3)$$

где:

 $\mathrm{EF}_{\mathrm{CO2,j,y}}$ - коэффициент выбросов CO_2 от сжигания j-углеводородной смеси на факельной установке за период у, т CO_2 /тыс.м 3 ;

 $\mathbb{W}_{\text{CO2}\,\dot{\mathfrak{l}}\,\mathbb{y}}$ - содержание \mathbb{CO}_2 в j-углеводородной смеси за период у, % мас.;

 $\mathbb{W}_{i,j,\mathbb{V}}$ - содержание і-компонента (кроме \mathbb{CO}_2) в ј-углеводородной смеси, % мас.;

 ${
m n}_{{
m C}\,i}$ - количество молей углерода на моль і-компонента углеводородной смеси;

 $\mathbf{M_{i}}$ - молярная масса і-компонента газообразного топлива, г/моль;

 ${}^{CF}_{j,\,y}$ - коэффициент недожога j-углеводородной смеси на факельной установке за период у, доля;

 ${\sf P}_{j,\, {\sf V}}$ - плотность j-углеводородной смеси за период у, кг/м 3 ;

44,011 - молярная масса СО₂.

Расчет коэффициента выбросов СН4:

$$EF_{CH4,j,y} = W_{CH4,j,y} \times CF_{j,y} \times \rho_{CH4} \times 10^{-2}$$
, (2.4)

где:

 ${
m EF_{CH4,j,y}}$ - коэффициент выбросов ${
m CH_4}$ от сжигания j-углеводородной смеси на факельной установке за период у, т ${
m CH_4}$ /тыс.м 3 ;

 $\mathbb{W}_{\text{CH4,i,v}}$ - содержание \mathbb{CH}_4 в j-углеводородной смеси за период у, % об. (% мол.);

 ${}^{C}F_{j,\,y}$ - коэффициент недожога j-углеводородной смеси на факельной установке за период у, доля;

 ho_{CH4} - плотность метана, кг/м 3 (принимается по таблице 1.2)

$$EF_{CH4,j,y} = W_{CH4,j,y} \times CF_{j,y} \times 10^{-2}$$
, (2.5)

где:

 $\mathrm{EF_{CH4,\,j,y}}$ - коэффициент выбросов $\mathrm{CH_4}$ от сжигания j-углеводородной смеси на факельной установке за период у, т $\mathrm{CH_4/T}$;

 $W_{\mathrm{CH4,\,j,y}}$ - содержание $\mathrm{CH_4}\,\mathrm{B}\,\mathrm{j}$ -углеводородной смеси за период у, % мас.;

 ${}^{CF}_{j,\,y}$ - коэффициент недожога j-углеводородной смеси на факельной установке за период у, доля.

- 2.7. При отсутствии за отчетный период репрезентативных фактических данных по компонентному химическому составу сжигаемой на факельной установке углеводородной смеси, полученных в рамках проведения регулярных лабораторных анализов с использованием официально утвержденных методик и лабораторного оборудования, поверенного, откалиброванного и проходящего техническое обслуживание в соответствии с требованиями законодательства, используются значения коэффициентов выбросов, представленные в таблице 2.1 настоящего приложения, либо иные справочные данные в соответствии с пунктом 9 настоящей Методики.
- 2.8. Коэффициент недожога углеводородной смеси на факельной установке (CFj,y) определяется экспериментально или принимается в соответствии с N 1, 2 таблицы 2.2 настоящего приложения в зависимости от условий сжигания углеводородных смесей (бессажевое или сажевое сжигание). При отсутствии фактических данных об условиях сжигания углеводородных смесей на факельной установке (бессажевом или сажевом сжигании) значения коэффициента недожога (CFj,y) принимается для месторождений или перерабатывающих предприятий в соответствии с N 3, 4 таблицы 2.2 настоящего приложения.

Таблица 2.1 Коэффициенты выбросов парниковых газов при сжигании углеводородных смесей на факельных установках, применяемых при отсутствии фактических данных о компонентном химическом составе сжигаемой углеводородной смеси

N	Вид углеводородной смеси	Коэффициент выбросо* ${\rm CO}_2({\rm EF}_{{\rm CO}2,j,y})$		Коэффициент выбросо* ${ m CH_4}({ m EF_{CH4}}_{j,y})$, % об.	
		т/т	т/тыс.м ³	т/т	т/тыс.м ³
1	Газ природный	2,6986	1,8263	0,0006	0,0004
2	Попутный нефтяной газ	2,6121	3,3689	0,0041	0,0053
3	Газ дегазации угольных пластов	1,8863	1,6294	0,0206	0,0178
4	Газ газоконденсатных месторождений	2,7470	2,0245	0,0005	0,0004

^{*} Текст документа соответствует оригиналу. - Примечание изготовителя базы данных.

Таблица 2.2 Коэффициенты недожога углеводородной смеси на факельной установке

N	Условия сжигания на факельной установке	Коэффициент недожога* доля
1	Бессажевое сжигание (в том числе природного газа* некондиционных газовых и газоконденсатных смесей)	0,0006
2	Сажевое сжигание (в том числе некондиционного углеводородного конденсата)	0,035
3	Нефтяные, газоконденсатные и газовые месторождения	0,02
4	Нефтеперерабатывающие, нефтехимические, химические* металлургические и прочие предприятия	0,005

^{*} Текст документа соответствует оригиналу. - Примечание изготовителя базы данных.

3. Фугитивные выбросы

- 3.1. Категория источников "фугитивные выбросы" включает организованные и неорганизованные выбросы CH_4 и CO_2 в атмосферу, возникающие в результате технологических операций, осуществляемых при добыче, транспортировке, хранении и переработке сырой нефти и природного газа, а также при добыче угля подземным способом.
- 3.2. В количественное определение фугитивных выбросов парниковых газов в организациях включаются организованные постоянные или залповые выбросы в результате удаления технологических газов в атмосферу через свечи и дефлекторы (отведение, рассеивание, стравливание) без сжигания или каталитического окисления. Технологические операции, приводящие к фугитивным выбросам, связанные с нефтью и газом, включают продувки скважин, технологических трубопроводов, участков газопроводов, технологического оборудования; стравливание из технологического оборудования, из коммуникаций, участков газопроводов; вытеснение воздуха газом; выветривание (дегазация); пуски, остановки, изменение режимов работы газоперекачивающих агрегатов, а также технологические операции, осуществляемые при добыче угля подземным способом (дегазация сопутствующих газов из угольных пластов и вентиляция воздуха угольных шахт).
- 3.3. В количественное определение фугитивных выбросов парниковых газов в организациях не включаются неорганизованные выбросы в результате утечек из технологического оборудования через сварные швы, фланцевые и резьбовые соединения, сальниковые уплотнения, штоки кранов, выбросы от добычи угля открытым способом, низкотемпературного окисления и неконтролируемого сжигания угля после добычи, выбросы от закрытых скважин и угольных шахт, выбросы при аварийных и чрезвычайных ситуациях.
- 3.4. Выбросы от стационарного сжигания топлива для технологических и энергетических целей и сжигания в факелах, осуществляемых при операциях, связанных с добычей и переработкой нефти, природного газа и угля, учитываются с использованием методов, изложенных в пунктах 1 "Стационарное сжигание топлива", 4 "Нефтепереработка", 5 "Производство кокса", 12 "Нефтехимическое производство" и 14 "Черная металлургия" настоящего приложения.
- 3.5. Количественное определение фугитивных выбросов парниковых газов осуществляется расчетным методом на основе данных о расходе углеводородной смеси для осуществления технологических операций или объеме их отведения (стравливания, рассеивания) без сжигания или каталитического окисления. Расчет выполняется по формуле (3.1):

$$E_{i,y} = \sum_{j=1}^{n} (FC_{j,y} \times W_{i,j,y} \times \rho_i \times 10^{-2}),$$
 (3.1)

где:

 $E_{i,y}$ - фугитивные выбросы і-парникового газа за период у, т;

 $FC_{j,y}$ - расход j-углеводородной смеси на технологические операции (объем отведения без сжигания) за период y, тыс.м 3 ;

 $\mathbb{W}_{i,\,j,y}$ - содержание і-парникового газа в ј-углеводородной смеси за период у, % об.;

 ho_i - плотность і-парникового газа, кг/м 3 (принимается по таблице 1.2);

i- CO_2 , CH_4 ;

ј - вид углеводородной смеси;

n - количество видов углеводородных смесей, используемых на технологические операции

(отводимых без сжигания).

- 3.6. Расход углеводородной смеси на технологические операции и объем отведения углеводородных смесей без сжигания (${^{FC}}_{j,y}$) определяется по фактическим инструментальным или расчетным данным за отчетный период.
- 3.7. При отсутствии фактических данных по компонентному химическому составу углеводородных смесей значения содержания ${\rm CO}_2$ (${\rm W}_{{\rm CO2},j,y}$) и ${\rm CH}_4$ (${\rm W}_{{\rm CH4},j,y}$) принимаются согласно данным, приведенным в таблице 3.1 настоящего приложения, либо иным справочным данным в соответствии с пунктом 9 настоящей Методики.

Таблица 3.1 Значения концентрации метана и диоксида углерода для определения фугитивных выбросов, применимых при отсутствии фактических данных компонентного состава углеводородной смеси

N	Вид углеводородной смеси	Содержание СН ₄ ($\mathbb{W}_{\text{CH4, j, y}}$), % об.	Содержание СО ₂ (W _{CO2,j,y}), % об.
1	Газ природный (сероводородсодержащие месторождения)	51,5	14,2
2	Газ природный	98,4	0,04
3	Попутный нефтяной газ	89,8	8,4
4	Газ дегазации угольных пластов	76,0	10,6

4. Нефтепереработка

- 4.1. Данная категория источников выбросов парниковых газов включает выбросы \mathbb{CO}_2 от промышленных процессов, связанных с переработкой нефти на нефтеперерабатывающих предприятиях, возникающие в результате стационарного сжигания топлива, сжигания углеводородных смесей в факелах, каталитических процессов крекинга и риформинга, прокалки кокса и производства водорода.
- 4.2. Потенциальные выбросы парниковых газов в нефтеперерабатывающем производстве, связанные также с производством нефтяного кокса и окисленных битумов, сероочисткой, неорганизованными выбросами в результате утечек газообразного топлива рассчитываются по следующим формулам:

$$\Pi\Gamma$$
 утечки = M утечки · $\Pi\Pi$ CH_4 ; или
$$\Pi\Gamma$$
 утечки = M $C1$ · $C5$ · 0 , 7 · $\Pi\Pi$ CH_4 ; где:

М утечки - масса прямых утечек, т;

М С1-С5- масса предельных углеводородов от неорганизованных источников;

 $\Pi\Pi\Pi$ CH_4 - потенциал глобального потепления = 25.

- 4.3. Данная категория источников выбросов не включает выбросы парниковых газов от стационарного сжигания топлива, не связанного непосредственно с процессами нефтепереработки, а также выбросы при аварийных и чрезвычайных ситуациях. Выбросы $N_2 \ \bigcirc$, потенциально возникающие при переработке нефти, не учитываются.
- 4.4. Количественное определение выбросов CO_2 от стационарного сжигания топлива в технологических процессах нефтепереработки выполняется в соответствии с пунктом 1 "Стационарное сжигание топлива" настоящего приложения.
- 4.5. Количественное определение выбросов ${\rm CO}_2$ от сжигания углеводородных смесей в факелах на нефтеперерабатывающих предприятиях выполняется в соответствии с пунктом 2 "Сжигание в факелах" настоящего приложения.
- 4.6. Количественное определение выбросов CO_2 от каталитических процессов переработки нефти, возникающих при выжиге кокса катализаторов (регенерации катализаторов) выполняется по формуле (4.1):

$$E_{CO2,v} = M_{KOKC,v} \times W_{C,KOKC,v} \times 3,664$$
, (4.1)

где:

 $E_{\mathrm{CO2,y}}$ - выбросы CO_2 от регенерации катализаторов за период у, т CO_2 ;

 $M_{\text{кокс},y}$ - выгорание кокса на катализаторе в регенераторах установок каталитических процессов нефтепереработки за период у, т;

 $W_{C,\kappa_{OKC},y}$ - содержание углерода в коксе за период у, т С/т кокса;

3,664 - коэффициент перевода, т СО₂ /т С.

Масса кокса, выжигаемого при регенерации катализаторов ($M_{\text{кокс},y}$) принимается по фактическим данным организации за отчетный период. Содержание углерода в коксе ($W_{C,\text{кокс},y}$) определяется по фактическим данным организации за отчетный период или поставщика катализаторов, а при отсутствии таких данных принимается по умолчанию равным 0,94 т C/т кокса. Масса сгоревшего углерода при регенерации катализатора ($M_{\text{кокс},y} \times W_{C,\text{кокс},y}$) определяется по фактическим данным измерений в соответствии с пунктами 4.6.1, 4.6.2.

4.6.1. Для процесса каталитического крекинга, в котором регенерация катализатора происходит непрерывно, масса сгоревшего углерода определяется по формулам:

$$M_{yxx,y} = (Q_y \times K_y)/100$$
, (4.1.1)

где:

 ${
m M_{y_{III},y}}$ - масса сгоревшего углерода при регенерации катализатора за период у, т;

 $\mathbb{Q}_{\mathtt{V}}$ - масса сырья, переработанного за период у, т;

 K_{y} - средневзвешенный выход углерода за период у, для которого определяется выброс парниковых газов, % мас.

$$\mathbb{K}_{y} = \frac{(\sum_{i=1}^{n-1} (k_{i} \times m_{i})) + (k_{n} \times m_{n})}{Q_{v}}, \quad (4.1.2)$$

где:

 k_i - расчетный выход углерода, одного из нескольких измерений, выполненных за период времени, для которого определяется выброс парниковых газов, % мас.;

 ${
m m}_{
m i}$ - масса сырья, переработанного за период времени между і-тым и і + 1 определением выхода углерода, т;

і - номер измерения, многократно выполняемого в течение периода у;

 ${\sf n}$ - количество измерений каталитического крекинга за период у, для которого определяется выброс парниковых газов.

$$m_n = Q_v - \sum_{i=1}^{n-1} m_i$$
, (4.1.3)

Выход углерода каталитического крекинга (k_i) определяется путем одновременной фиксации массовых расходов сырья и продуктов установки каталитического крекинга, измерения расхода дымовых газов регенератора, давления, температуры газов, также концентрации СО, CO_2 в отходящих газах. По данным измерений составляется материальный баланс установки, производится расчет массы углерода сжигаемого на катализаторе в единицу времени на момент фиксации параметров. Выход углерода определяется делением массы углерода, сжигаемого на катализаторе в единицу времени на расход сырья в момент фиксации параметров.

4.6.2. Для процессов гидрокрекинга, риформинга, гидроочистки, в которых регенерация катализатора происходит периодически, масса углерода сгоревшего при регенерации катализатора определяется по формуле:

$$M_{yrm,y} = (W_y \times \Delta q) / 100$$
, (4.1.4)

где:

 ${
m M_{{
m VIII}}}_{,{
m V}}$ - масса сгоревшего углерода при регенерации катализатора за период у, т;

 $\mathbb{W}_{\mathbb{V}}$ - масса регенерируемого катализатора, т;

 Δq - уменьшение содержания углерода на катализаторе при регенерации, % мас.

4.7. Количественное определение выбросов CO_2 от прокалки кокса выполняется по формуле (4.2):

$$E_{\mathrm{CO}_{2,y}} = ((M_{\mathrm{kokc\ chip},y} \times W_{\mathrm{C,kokc\ chip},y}) - (M_{\mathrm{kokc\ mpok},y} + M_{\mathrm{kokc\ mbind},y}) \times W_{\mathrm{C,kokc\ mpok},y}) 3,664 ,$$

$$(4.2)$$

где:

 ${
m E}_{{
m CO}_{2,y}}$ - выбросы ${
m CO}_2$ от прокалки нефтяного кокса за период у, т ${
m CO}_2$;

 $\mathbb{M}_{\mathtt{кокс\ curp.,y}}$ - количество сырого кокса, поступившего на установку прокалки кокса за период у, т;

 $\mathbb{W}_{\mathbb{C}, \mathtt{kokc} \; \mathtt{chp}, \mathtt{y}}$ - содержание углерода в сыром коксе, поступившем на установку прокалки кокса за период у, т С/т;

 $M_{\text{кокс прок},y}$ - количество прокаленного кокса, полученного на установке прокалки кокса за период у, т;

 $M_{\text{кокс пьять},y}$ - количество пыли от установки прокалки нефтяного кокса, уловленной системой пылеочистки за период у, т;

 $W_{C, \text{кокс прок, y}}$ - содержание углерода в прокаленном коксе за период у, т С/т;

3,664 - коэффициент перевода, т СО₂ /т С.

Количество сырого кокса, поступившего на установку прокалки кокса ($M_{\mathtt{кокс}\ \mathtt{сыр},y}$), количество прокаленного кокса ($M_{\mathtt{кокс}\ \mathtt{прок},y}$) и количество уловленной пыли ($M_{\mathtt{кокс}\ \mathtt{пыль},y}$) принимается по фактическим данным организации за отчетный период. Содержание углерода в сыром коксе ($W_{\mathtt{C},\mathtt{кокс}\ \mathtt{сыр},y}$) и прокаленном коксе определяется по фактическим данным организации за отчетный период в соответствии с пунктом 1 "Стационарное сжигание топлива" настоящего приложения или при отсутствии необходимых данных принимается по таблице 1.1 настоящего приложения, либо иным справочным данным в соответствии с пунктом 9 настоящей Методики.

4.8. Количественное определение выбросов ${\rm CO}_2$ от производства водорода выполняется по формуле (4.3):

$$E_{CO2,y} = RMC_{i,y} \times W_{C,i,y} \times 3,664,$$
 (4.3)

где:

 $\mathbb{E}_{\mathbb{CO}2,\mathbb{y}}$ - выбросы \mathbb{CO}_2 от производства водорода за период у, т \mathbb{CO}_2 ;

 ${
m RMC}_{i,y}$ - расход i-углеродсодержащего сырья (топлива) на производство водорода за период y, т, тыс.м 3 , т y.т. или ТДж;

 $\mathbb{W}_{\mathbb{C},i,y}$ - содержание углерода в i-углеродсодержащем сырье (топливе) за период у, т С/ед.;

і - вид углеродсодержащего сырья (топлива).

Расход углеродсодержащего сырья (топлива) на производство водорода (${
m RMC}_{i,y}$) принимается по фактическим данным организации за отчетный период. Содержание углерода в углеродсодержащем сырье (топливе) (${
m W}_{{
m C},i,y}$) определяется по фактическим данным организации за

отчетный период в соответствии с пунктом 1 "Стационарное сжигание топлива" настоящего приложения или при отсутствии необходимых данных принимается по таблице 1.1 настоящего приложения.

- 5. Производство кокса
- 5.1. Данная категория источников выбросов парниковых газов включает выбросы ${\rm CO}_2$ при производстве кокса, возникающие в результате сжигания топлива в печах коксования, окисления углерода кокса и коксующихся углей, сжигания сопутствующих продуктов производства кокса.
- 5.2. Данная категория источников выбросов не включает выбросы парниковых газов от стационарного сжигания топлива, не связанного непосредственно с производством кокса, утечек, связанных с распределением газообразного топлива, и выбросы при аварийных и чрезвычайных ситуациях.

Выбросы от стационарного сжигания топлива, не связанного непосредственно с производством кокса, определяются в соответствии с пунктом 1 "Стационарное сжигание топлива" настоящего приложения. Если в организации не ведется раздельный учет сжигания топлива, коксового газа и других сопутствующих продуктов производства кокса в стационарных установках, не связанных непосредственно с производством кокса, выбросы ${\rm CO}_2$ от сжигания топлива в таких установках определяются в совокупности с выбросами от производства кокса в целом по организации с использованием формулы (5.1).

В тех случаях, когда производство кокса входит в состав предприятия черной металлургии, объем выбросов ${\rm CO}_2$ от производства кокса определяется в совокупности с выбросами ${\rm CO}_2$ от других производств и источников металлургического предприятия в порядке, предусмотренном в пункте 14 "Черная металлургия" настоящего приложения.

Выбросы от сжигания коксового газа на факельных установках учитываются в соответствии с пунктом 2 "Сжигание в факелах" настоящего приложения, если объем сжигаемого на факелах коксового газов учитывается как сопутствующая продукция или отходы, не возвращенные в производство кокса.

- 5.3. Выбросы ${
 m CH_4}$ и ${
 m N_2O}$, потенциально возникающие при производстве кокса, не учитываются.
- 5.4. Количественное определение выбросов ${\rm CO}_2$ выполняется на основе составления углеродного баланса производства кокса с учетом всех входящих и выходящих материальных потоков по формуле (5.1):

$$\begin{split} \mathbf{E}_{\text{CO2,y}} &= \left[\left(\!\! \left[\!\! \left(\!\! \mathbf{RMC}_{\text{koke yr,y}} \! \times \! \mathbf{W}_{\text{C,koke. yr,y}} \right) \!\! + \sum_{j} \! \left(\!\!\! \mathbf{FC}_{j,y} \! \times \! \mathbf{W}_{\text{C,j,y}} \right) \!\!\! \right) \!\! - \left(\!\!\! \left(\!\!\! \mathbf{P}_{\text{koke,y}} \! \times \! \mathbf{W}_{\text{C,koke,y}} \right) \!\!\! + \sum_{l} \! \left(\!\!\! \mathbf{SP}_{l,y} \! \times \! \mathbf{W}_{\text{C,l,y}} \right) \!\!\! \right) \!\!\! \right] \! \times \! \mathbf{SP}_{l,y} \! \times \! \mathbf{W}_{l,y} \! \right) \\ &\text{fge:} \end{split}$$

 $\mathbb{E}_{\mathbb{CO}2,\mathbb{V}}$ - выбросы \mathbb{CO}_2 от производства кокса за период у, т \mathbb{CO}_2 ;

 $\mathrm{RMC}_{\mathrm{кокс.VI.,V}}$ - расход коксующихся углей на производство кокса за период у, т;

 $W_{C, \text{кокс. уг., y-}}$ содержание углерода в коксующихся углях за период у, т С/т;

 ${
m FC}_{i,v}$ - расход ј-топлива на производство кокса за период у, т, тыс.м 3 , т у.т. или ТДж;

 $\mathbb{W}_{\mathbb{C},j,\mathbb{V}}$ - содержание углерода в ј-топливе за период у, т С/ед.;

 $P_{\mathtt{KOKC,V}}$ - производство кокса за период у, т;

 $W_{C, \text{кокс, y}}$ - содержание углерода в коксе за период у, т С/т;

 $SP_{l,y}$ - производство сопутствующей продукции или образование отходов, не возвращенных в производство кокса, за период у, т, тыс.м 3 , т у.т. или ТДж;

 $\mathbb{W}_{\mathbb{C},\mathbb{L}_{\mathbb{V}}}$ - содержание углерода в сопутствующей продукции или отходах, т С/ед.;

- ј вид топлива (природный газ, коксовый газ, другие виды топлива);
- 1 вид сопутствующей продукции или отходов (коксовый газ, каменноугольная смола, бензол, другие).
- 5.5. Количество производимого кокса $(P_{\text{кокс},y})$, сопутствующей продукции и отходов $(SP_{l,y})$, расходуемых коксующихся углей $(RMC_{\text{кокс},yr,y})$ и топлива $(FC_{j,y})$ определяются по фактическим данным организации за отчетный период в соответствии с пунктом 9 настоящей Методики.

При использовании в шихте для коксования углей, отличных от коксующихся, они должны быть также учтены в расчетах, как входящие углеродсодержащие материалы (${
m RMC}_{
m кокс. yr,y}$). Расход топлива на производство кокса (${
m FC}_{j,y}$) не должен включать коксовый газ, полученный в процессе производства кокса. Выход сопутствующей продукции и отходов (${
m SP}_{l,y}$) не должен включать коксовый газ и другие продукты коксования, сжигаемые на факельных установках или печах дожига.

- 5.6. Содержание углерода в коксе ($W_{C,\kappa_0\kappa_C,y}$), сопутствующей продукции и отходах ($W_{C,l,y}$), в коксующемся угле ($W_{C,\kappa_0\kappa_C,yr,y}$) и топливе ($W_{C,j,y}$) принимается по фактическим данным организации за отчетный период. При отсутствии фактических данных используются значения, приведенные в таблице 1.1 настоящего приложения, либо иные справочные данные в соответствии с пунктом 9 настоящей Методики.
 - 6. Производство цемента
- 6.1. Данная категория источников выбросов парниковых газов включает выбросы ${\rm CO_2}$, возникающие при производстве цемента в процессе получения клинкера в результате кальцинации (высокотемпературного разложения) карбонатного сырья, а также при использовании углеродсодержащих некарбонатных материалов при производстве клинкера.
- 6.2. В данную категорию источников парниковых газов не включаются выбросы CO_2 от сжигания топлива в печах обжига при производстве клинкера и других стационарных источников выбросов. Выбросы от стационарного сжигания топлива определяются в соответствии с пунктом 1 "Стационарное сжигание топлива" настоящего приложения.
- 6.3. При производстве цемента применяется сырье и топливо, содержащие биомассу, в результате использования которых возникают дополнительные выбросы парниковых газов. При выполнении организациями количественной оценки выбросов парниковых газов от использования биомассы, эти данные не суммируются с другими выбросами парниковых газов.
- 6.4. Количественное определение выбросов ${\rm CO}_2$ от производства цемента выполняется для отдельных обжиговых печей, технологий производства цемента или по организации в целом одним из

следующих методов:

расчет выбросов CO_2 на основе данных о расходе карбонатного сырья и углеродсодержащих нетопливных материалов;

расчет выбросов ${\rm CO}_2$ на основе данных о производстве клинкера и расходе углеродсодержащих нетопливных материалов.

Выбор метода количественного определения выбросов осуществляется организациями исходя из доступности исходных данных для выполнения расчетов по формулам (6.1, 6.2) и обеспечения наилучшей точности результатов.

- 6.5. Расчет выбросов ${\Bbb CO}_2$ на основе данных о расходе карбонатного сырья и углеродсодержащих нетопливных материалов.
 - 6.5.1. Расчет выбросов выполняется по формуле (6.1):

 $\mathbb{E}_{\mathrm{CO2,y}}$ - выбросы $\mathrm{CO_2}$ от производства цемента за период у, т $\mathrm{CO_2}$;

 $M_{j,v}$ - масса карбоната j, израсходованного в обжиговой печи за период y, т;

 EF_{j} - коэффициент выбросов для карбоната j, т CO_2 /т;

 $F_{j,y}$ - степень кальцинирования карбоната ј за период у, доля;

 ${
m M_{CD,y}}$ - масса цементной пыли, не возвращенной в обжиговую печь за период у, т;

 $W_{j,\mathbb{CD},y}$ - массовая доля исходного карбоната ј в составе цементной пыли, не возвращенной в обжиговую печь за период у, доля;

 $F_{{
m CD}, v}$ - степень кальцинирования цементной пыли, не возвращенной в обжиговую печь, доля;

 $\mathrm{RMC}_{k,y}$ - расход углеродсодержащего нетопливного сырьевого материала k, т;

 $\mathbb{W}_{\mathrm{C.k.v}}$ - содержание углерода в составе нетопливного сырьевого материала k, доля;

3,664 - коэффициент перевода, т CO_2 /т C;

і - вид карбоната, подаваемого в обжиговую печь (кальцит, магнезит и другие);

n - количество видов карбонатов, подаваемых в обжиговую печь;

k - вид углеродсодержащего нетопливного сырьевого материала, подаваемого в обжиговую печь (кероген, зольная пыль и другие);

т - количество углеродсодержащих нетопливных сырьевых материалов, подаваемых в

обжиговую печь.

- 6.5.2. Масса карбоната j, израсходованного в обжиговой печи за отчетный период ($M_{j,y}$) определяется по результатам измерений (взвешивания) карбонатного сырья за вычетом содержания влаги и примесей (при наличии соответствующих данных). Расход карбонатного сырья, которое не подвергается обжигу, а используется на этапе конечного размола при приготовлении цемента, исключается из рассмотрения. Значение коэффициента выбросов для карбоната j (EF_j) принимается по таблице 6.1 настоящего приложения или при отсутствии необходимых данных рассчитывается как стехиометрическое отношение молекулярной массы CO_2 к молекулярной массе карбоната. Степень кальцинирования карбоната j ($F_{j,y}$) определяется на основе фактических данных измерений содержания карбонатов в клинкере отнесенных к общему количеству, израсходованных карбонатов за отчетный период, выраженных в тоннах, а при отсутствии фактических данных принимается для всего карбонатного сырья равным 1,0 (или 100%).
- 6.5.3. Поправка (уменьшение) количества выбросов ${\rm CO}_2$ от производства цемента, связанная с неполным кальцинированием карбонатов удаленных с цементной пылью, осуществляется организациями в случае, если в организации имеются фактические данные о степени кальцинирования карбонатов в составе цементной пыли. В противном случае, степень кальцинирования цементной пыли (${\rm F}_{{\rm CD},y}$) принимается равной 1,0 (или 100%), что дает нулевую вычитаемую поправку.
- 6.5.4. Масса цементной пыли, не возвращенной в обжиговую печь за отчетный период ($^{
 m M}_{
 m CD,y}$), оценивается организациями на основе результатов измерений или расчетов. Массовая доля исходного карбоната ј в составе цементной пыли, не возвращенной в обжиговую печь ($^{
 m W}_{
 m j,CD,y}$), принимается равной доле соответствующего карбоната ј в составе сырья, израсходованного в обжиговой печи за отчетный период. Степень кальцинирования цементной пыли, не возвращенной в обжиговую печь ($^{
 m F}_{
 m CD,y}$), определяется по фактическим данным измерений. Значение коэффициента выбросов для карбоната ј ($^{
 m EF}_{
 m j}$) принимается по таблице 6.1 настоящего приложения или при отсутствии необходимых данных рассчитывается как стехиометрическое отношение молекулярной массы $^{
 m CO}_2$ к молекулярной массе карбоната.
- 6.5.5. При использовании в обжиговых печах углеродсодержащих нетопливных сырьевых материалов, за исключением карбонатов, организации определяют расход таких материалов за отчетный период (${}^{\rm RMC}_{k,y}$) по результатам фактических измерений (взвешивания), а содержание углерода в них за отчетный период (${}^{\rm W}_{{\rm C},k,y}$) принимается по результатам испытаний или справочным данным.
- 6.6. Расчет выбросов CO_2 на основе данных о производстве клинкера и расходе углеродсодержащих нетопливных материалов
 - 6.6.1. Расчет выбросов выполняется по формуле (6.2):

$$E_{CO2,y} = \sum_{i=1}^{n} \left(CP_{y} \times W_{i,C,y} \times EF_{CO2,i} \right) + \sum_{i=1}^{n} \left(M_{CD,y} \times W_{i,CD,y} \times EF_{CO2,i} \right) + \sum_{k=1}^{m} \left(RMC_{k,y} \times W_{C,k,y} \times 3,664 \right)$$
(6.2)

где:

 $\mathbb{E}_{\mathrm{CO2,y}}$ - выбросы CO_2 от производства цемента за период у, т CO_2 ;

 ${
m CP}_{
m v}$ - производство клинкера за период у, т;

 $\mathbb{W}_{i,\mathbb{C},y}$ - массовая доля і-оксида (CaO, MgO) в клинкере, полученного при кальцинировании карбонатного сырья за период у, доля;

 $\mathrm{EF}_{\mathrm{CO2,i}}$ - коэффициент выбросов для оксида і, полученного из карбонатного сырья т CO_2 /т;

 ${
m M_{CD,v}}$ - масса цементной пыли, не возвращенной в обжиговую печь за период у, т;

 $W_{i,{\rm CD},y}$ - массовая доля і-оксида (CaO, MgO) в цементной пыли, не возвращенной в обжиговую печь за период у, доля;

 $\mathrm{RMC}_{k,v}$ - расход углеродсодержащего нетопливного сырьевого материала k, т;

 $\mathbb{W}_{\mathtt{C},\mathtt{k},\mathtt{v}}$ - содержание углерода в составе нетопливного сырьевого материала k, доля;

3,664 - коэффициент перевода, т СО₂/т С;

i - оксиды (CaO, MgO) в клинкере и цементной пыли;

n - количество видов оксидов (CaO, MgO) в клинкере и цементной пыли;

k - вид углеродсодержащего нетопливного сырьевого материала, подаваемого в обжиговую печь (кероген, зольная пыль и другие);

т - количество видов карбонатов, подаваемых в обжиговую печь.

- 6.6.2. Производство клинкера (${}^{\rm CP}_y$) принимается по фактическим данным организации за отчетный период. Массовое содержание CaO и MgO в клинкере, полученного при кальцинировании карбонатного сырья (${}^{\rm W}_{i,C,y}$) определяется по результатам лабораторных измерений содержания соответствующих оксидов в клинкере за отчетный период за вычетом доли оксидов, поступающих из некарбонатного сырья и содержащихся в не кальцинированных карбонатах в клинкере. Если некарбонатные источники CaO и MgO не применяются при производстве клинкера и лабораторные измерения содержания не кальцинированных карбонатов в клинкере на проводятся, значение (${}^{\rm W}_{i,C,y}$) принимается равным содержанию соответствующих оксидов в клинкере. Значение коэффициента выбросов для і-оксида (${}^{\rm EF}_i$) принимается по таблице 6.2 настоящего приложения.
- 6.6.3. Масса цементной пыли, не возвращенной в обжиговую печь за отчетный период ($^{\rm M}_{\rm CD,y}$), оценивается организациями на основе результатов измерений или расчетов. Массовое содержание CaO и MgO в цементной пыли, не возвращенной в обжиговую печь за отчетный период ($^{\rm W}_{i,{\rm CD},y}$), определяется по результатам лабораторных измерений содержания соответствующих оксидов в цементной пыли за отчетный период за вычетом доли оксидов, поступающих из некарбонатного сырья и содержащихся в не кальцинированных карбонатах цементной пыли. Значение массовой доли CaO и MgO в цементной пыли ($^{\rm W}_{i,{\rm CD},y}$) принимается равным соответствующему значению для

клинкера ($\mathbb{W}_{i,\mathbb{C},y}$), в случае, если данные лабораторных измерений отсутствуют. Значение коэффициента выбросов для і-оксида ($\mathbb{E}F_i$) принимается по таблице 6.2 настоящего приложения.

6.6.4. При использовании в обжиговых печах углеродсодержащих нетопливных сырьевых материалов, за исключением карбонатов, организации определяют расход таких материалов за отчетный период ($^{\rm RMC}_{k,y}$) по результатам фактических измерений (взвешивания), а содержание углерода в них за отчетный период ($^{\rm W}_{{\rm C},k,y}$) принимается по результатам испытаний или справочным данным.

Таблица 6.1 Коэффициенты выбросов СО2 для некоторых карбонатов

Химическая формула карбоната	Коэффициент выбросов ($\mathrm{EF_i}$), т CO_2 /т
CaCO ₃	0,440
MgCO ₃	0,522
CaMg(CO ₃) ₂	0,477
FeCO ₃	0,380

Таблица 6.2 Коэффициенты выбросов ${
m CO}_2$ для некоторых оксидов, полученных из карбонатного сырья

Химическая формула оксида	Коэффициент выбросов ($^{EF}_{j}$), т $^{CO}_{2}$ /т
CaO	0,785
MgO	1,092

7. Производство извести

- 7.1. Данная категория источников выбросов парниковых газов включает выбросы CO_2 , образующиеся при производстве извести, обжиге известняка, доломита и магнезита в результате кальцинации (высокотемпературного разложения) карбонатного сырья ($CaCO_3$, $MgCO_3$, $CaMg(CO_3)_2$) с получением извести всех типов, включая гашеную (гидратированную) известь.
- 7.2. В данную категорию источников парниковых газов не включаются выбросы \mathbb{CO}_2 от сжигания топлива в печах обжига при производстве извести и других стационарных источников выбросов. Выбросы от стационарного сжигания топлива определяются в соответствии с пунктом 1 "Стационарное сжигание топлива" настоящего приложения.

В тех случаях, когда производство извести входит в состав предприятия черной металлургии, объем выбросов CO_2 от производства извести определяется в совокупности с выбросами CO_2 от других производств и источников металлургического предприятия в порядке, предусмотренном в

пункте 14 "Черная металлургия" настоящего приложения.

7.3. Количественное определение выбросов CO_2 от производства извести выполняется для отдельных обжиговых печей, технологий производства извести или по организации в целом одним из следующих методов:

расчет выбросов CO_2 на основе данных о расходе карбонатного сырья;

расчет выбросов CO_2 на основе данных о производстве извести.

Выбор метода количественного определения выбросов осуществляется организациями исходя из доступности исходных данных для выполнения расчетов по формулам (7.1, 7.2) и обеспечения наилучшей точности результатов.

- 7.4. Расчет выбросов $\ensuremath{\mathbb{CO}}_2$ на основе данных о расходе карбонатного сырья
- 7.4.1. Расчет выбросов выполняется по формуле (7.1):

$$\mathbf{E}_{\text{CO2},y} = \sum_{i=1}^{n} \left(\mathbf{M}_{j,y} \times \text{EF}_{\text{CO2},j} \times \mathbf{F}_{j,y} \right) - \sum_{i=1}^{n} \left(\mathbf{M}_{\text{LD},y} \times \mathbf{W}_{j,\text{LD},y} \times \left(1 - \mathbf{F}_{\text{LD},y} \right) \times \text{EF}_{\text{CO2},j} \right), \tag{7.1}$$

где:

 $\mathbb{E}_{\mathrm{CO2,\,V}}$ - выбросы $\,\mathrm{CO}_2\,$ от производства извести за период у, т $\,\mathrm{CO}_2\,$;

 $M_{j,y}$ - масса карбоната j, израсходованного в обжиговой печи за период y, т;

 $\mathrm{EF}_{\mathrm{CO2},j}$ - коэффициент выбросов для карбоната j, т CO_2 /т;

 $F_{j,y}$ - степень кальцинирования карбоната ј за период у, доля;

 ${
m M_{LD,v}}$ - масса известковой пыли, образованной за период у, т;

 $\mathbb{W}_{j, LD, y}$ - массовая доля исходного карбоната j в составе известковой пыли за период y, доля;

 $F_{\mathrm{LD,V}}$ - степень кальцинирования известковой пыли, доля;

- ј вид карбоната, подаваемого в обжиговую печь (кальцит, магнезит и другие);
- n количество видов карбонатов, подаваемых в обжиговую печь.
- 7.4.2. Масса карбоната j, израсходованного в обжиговой печи за отчетный период ($M_{j,y}$) определяется организациями по результатам измерений (взвешивания) карбонатного сырья за вычетом содержания влаги и примесей (при наличии соответствующих данных). Значение коэффициента выбросов для карбоната j ($EF_{CO2,j}$) принимается по таблице 6.1 настоящего приложения или при отсутствии необходимых данных рассчитывается как стехиометрическое отношение молекулярной массы CO_2 к молекулярной массе карбоната. Степень кальцинирования карбоната j ($F_{j,y}$) определяется на основе фактических данных измерений содержания карбонатов в

извести отнесенных к общему количеству, израсходованных карбонатов за отчетный период, выраженных в тоннах, а при отсутствии фактических данных принимается для всего карбонатного сырья равным 1,0 (или 100%).

- 7.4.3. Поправка (уменьшение) количества выбросов \mathbb{CO}_2 от производства извести, связанная с неполным кальцинированием карбонатов удаленных с известковой пылью и другими сопутствующими продуктами и отходами производства, осуществляется организациями в случае, если в организации имеются фактические данные о степени кальцинирования карбонатов в составе известковой пыли и других сопутствующих отходах. В противном случае, степень кальцинирования известковой пыли $(\mathbb{F}_{\mathrm{LD},\psi})$ принимается равной 1,0 (или 100%), что дает нулевую вычитаемую поправку.
- 7.4.4. Масса известковой пыли, образованной при производстве извести за отчетный период ($M_{LD,y}$), оценивается организациями на основе результатов измерений или расчетов. Массовая доля исходного карбоната ј в составе известковой пыли, не возвращенной в обжиговую печь ($W_{j,LD,y}$), принимается равной доли соответствующего карбоната ј в составе сырья, израсходованного в обжиговой печи за отчетный период. Степень кальцинирования известковой пыли, не возвращенной в обжиговую печь ($F_{LD,y}$), определяется по фактическим данным измерений. Значение коэффициента выбросов для карбоната ј ($EF_{CO2,j}$) принимается по таблице 6.1 настоящего приложения или при отсутствии необходимых данных рассчитывается как стехиометрическое отношение молекулярной массы CO_2 к молекулярной массе карбоната.
 - 7.5. Расчет выбросов СО2 на основе данных о производстве извести
 - 7.5.1. Расчет выбросов выполняется по формуле (7.2):

$$E_{\text{CO2},y} = \sum_{i=1}^{n} \left(\text{LP}_{y} \times W_{i,\text{L},y} \times \text{EF}_{\text{CO2},i} \right) + \sum_{i=1}^{n} \left(M_{\text{LD},y} \times W_{i,\text{LD},y} \times \text{EF}_{\text{CO2},i} \right), \quad (7.2)$$

где:

 $\mathrm{E}_{\mathrm{CO2,y}}$ - выбросы CO_2 от производства извести за период у, т CO_2 ;

 $\mathrm{LP}_{\mathtt{V}}$ - производство извести за период у, т;

 $W_{iL_{v}}$ - массовая доля і-оксида (CaO, MgO) в извести за период у, доля;

 $\mathrm{EF}_{\mathrm{CO2,i}}$ - коэффициент выбросов для оксида і, полученного из карбонатного сырья, т CO_2 /т;

 ${
m M_{LD,y}}$ - масса известковой пыли, образованной за период у, т;

 $\mathbb{W}_{i,LD,\mathbb{V}}$ - массовая доля і-оксида (CaO, MgO) в известковой пыли за период у, доля;

- i оксиды (CaO, MgO) в извести и известковой пыли;
- n количество видов оксидов (CaO, MgO) в извести и известковой пыли.
- 7.5.2. Производство извести (LP_y) принимается по фактическим данным организации за отчетный период. Массовое содержание CaO и MgO в извести, полученных при кальцинировании

карбонатного сырья ($\overline{W}_{i,L,y}$) определяется по результатам лабораторных измерений содержания соответствующих оксидов в извести за отчетный период за вычетом доли оксидов, поступающих из некарбонатного сырья и содержащихся в не кальцинированных карбонатах извести. Значение коэффициента выбросов для i-оксида ($\overline{EF}_{CO2,i}$), принимается по таблице 6.2 настоящего приложения.

- 7.5.3. Масса известковой пыли, образованной при производстве извести за отчетный период $(M_{LD,y})$, оценивается организациями на основе результатов измерений или расчетов. Массовое содержание CaO и MgO в известковой пыли, образованной за отчетный период ($W_{i,LD,y}$), определяется по результатам лабораторных измерений содержания соответствующих оксидов в известковой пыли за отчетный период за вычетом доли оксидов, поступающих из некарбонатного сырья и содержащихся в не кальцинированных карбонатах известковой пыли. Значение коэффициента выбросов для і-оксида (EF_i) принимается по таблице 6.2 настоящего приложения.
- 7.5.4. В расчет выбросов ${\rm CO}_2$ от производства извести по формуле (7.2) должны быть включены другие продукты и отходы производства извести, за исключением известковой пыли, в случае их образования за отчетный период. Расчет выполняется так же как для известковой пыли с учетом массы образования материалов и содержанием в них оксидов CaO и MgO, полученных из карбонатного сырья.
 - 8. Производство стекла
- 8.1. Данная категория источников выбросов парниковых газов включает выбросы ${\rm CO}_2$ при производстве всех типов стекла, включая тарное стекло, листовое стекло, стекловолокно и стеклянной ваты (категория минеральной ваты), возникающие от стекловаренных печей непрерывного или периодического действия в результате высокотемпературного расплавления карбонатов щелочных и щелочноземельных элементов (${\rm CaCO}_3$, ${\rm CaMg}({\rm CO}_3)_2$, ${\rm Na}_2{\rm CO}_3$, ${\rm BaCO}_3$, ${\rm K}_2{\rm CO}_3$ и другие).
- 8.2. В данную категорию источников парниковых газов не включаются выбросы СО₂ от сжигания топлива в стекловаренных печах и других стационарных источниках выбросов, а также окисления углеродсодержащих добавок. Выбросы от стационарного сжигания топлива определяются в соответствии с пунктом 1 "Стационарное сжигание топлива" настоящего приложения.
- 8.3. Количественное определение выбросов ${\rm CO}_2$ при производстве стекла осуществляется расчетным методом для отдельных стекловаренных печей или организации в целом по формуле (8.1):

$$E_{\text{CO2},y} = \sum_{j=1}^{n} \left[M_{j,y} \times EF_{\text{CO2},y} \times F_{j,y} \right], \quad (8.1)$$

где:

 $\mathbf{E}_{\mathrm{CO2,\,V}}$ - выбросы CO_2 от производства стекла за период у, т CO_2 ;

 $\mathrm{M}_{\mathrm{j,y}}$ - масса карбоната j, израсходованного в стекловаренных печах за период y, т;

 EF_{i} - коэффициент выбросов для карбоната j, т CO_2 /т;

 $F_{j,\, V}$ - степень кальцинирования карбоната ј за период у, доля;

- j вид карбоната, подаваемого в обжиговую печь ($CaCO_3$, $CaMg(CO_3)_2$, Na_2CO_3 и другие);
- n количество видов карбонатов, подаваемых в стекловаренные печи.
- 8.4. Масса карбоната j, израсходованного для производства стекла ($M_{j,y}$), определяется по фактическим данным организации за отчетный период за вычетом содержания влаги и примесей (при наличии соответствующих данных). При определении расхода карбонатного сырья не учитываются карбонатные материалы, произведенные методом карбонизации гидроксидов.
- 8.5. Значение коэффициента выбросов для карбоната ј ($^{\rm EF}_{\rm j}$) принимается по таблице 6.1 и 8.1 настоящего приложения или при отсутствии необходимых данных рассчитывается как стехиометрическое отношение молекулярной массы $^{\rm CO}_{\rm 2}$ к молекулярной массе карбоната.
- 8.6. Степень кальцинирования карбоната ј $(F_{j,y})$ определяется на основе фактических данных измерений содержания карбонатов в стекле отнесенных к общему количеству, израсходованных карбонатов за отчетный период, выраженных в тоннах, а при отсутствии фактических данных принимается для всего карбонатного сырья равным 1,0 (или 100%).

Таблица 8.1 Коэффициенты выбросов СО2 для некоторых карбонатов

Химическая формула карбоната	Коэффициент выбросов ($^{\mathrm{EF}}_{\mathrm{j}}$), т $^{\mathrm{CO}}_{\mathrm{2}}$ /т
Na ₂ CO ₃	0,415
NaHCO ₃	0,524
BaCO ₃	0,223
K ₂ CO ₃	0,318
Li ₂ CO ₃	0,596
SrCO ₃	0,284

- 9. Производство керамических изделий.
- 9.1. Данная категория источников выбросов парниковых газов включает выбросы ${\rm CO}_2$ при производстве кирпичей, кровельной черепицы, глазурованных керамических труб, огнеупорных и керамзитовых изделий, напольной и стеновой плитки, столовых и декоративных предметов (бытовая керамика), керамической сантехники, технической керамики и неорганических абразивных материалов.
- 9.2. В данную категорию источников парниковых газов не включаются выбросы \mathbb{CO}_2 от сжигания топлива в печах обжига и других стационарных источников выбросов. Выбросы от стационарного сжигания топлива определяются в соответствии с пунктом 1 "Стационарное сжигание топлива" настоящего приложения.
- 9.3. Количественное определение выбросов ${\rm CO}_2$ от производства керамических изделий выполняется по формуле (9.1):

$$E_{\text{CO2},y} = \sum_{j=1}^{n} \left[M_{j,y} \times MF_{j,y} \times EF_{\text{CO2},j} \times F_{j,y} \right], \quad (9.1)$$

 $\mathbb{E}_{\mathrm{CO2},\,\mathbb{V}}$ - выбросы $\,\mathbb{CO}_2\,$ от производства керамических изделий за период у, т $\,\mathbb{CO}_2\,$;

 $\mathbb{M}_{j,y}$ - расход минерального сырья, содержащего карбонат j, загруженное в обжиговую печь за период y, т;

 $\mathrm{MF}_{j,\,\mathbb{V}^{-}}$ содержание карбоната ј в минеральном сырье, доля;

 $\mathrm{EF}_{\mathrm{CO2,\,i}}$ - коэффициент выбросов для карбоната j, т CO_2 /т;

 $F_{j,y}$ - степень кальцинирования карбоната ј за период у, доля;

- j вид карбоната, подаваемого с минеральным сырьем в обжиговую печь (кальцит, магнезит и другие);
 - n количество видов карбонатов, подаваемых в обжиговую печь.
- 9.4. Расход минерального сырья, содержащего карбонаты, загруженного в обжиговую печь для производства керамических изделий ($M_{j,y}$), принимается по фактическим данным организации за отчетный период. Содержание карбонатов в минеральном сырье ($M_{j,y}$) определяется по фактическим данным измерений или справочным данным для соответствующих видов сырья.
- 9.5. Степень кальцинирования карбоната ј $(F_{j,y})$ определяется на основе фактических данных измерений содержания карбонатов в керамической продукции, отнесенных к общему количеству, израсходованных карбонатов за отчетный период, выраженных в тоннах, а при отсутствии фактических данных принимается для всего карбонатного сырья равным 1,0 (или 100%).
- 9.6. Значение коэффициента выбросов для карбоната ј ($^{\mathrm{EF}}_{\mathrm{CO2, j}}$) принимается по таблице 6.1 настоящего приложения или при отсутствии необходимых данных рассчитывается как стехиометрическое отношение молекулярной массы $^{\mathrm{CO}}_2$ к молекулярной массе карбоната.
 - 10. Производство аммиака
- 10.1. Данная категория источников выбросов парниковых газов включает выбросы ${\rm CO}_2$ при производстве аммиака (${\rm NH}_3$) методом парового реформинга газообразного углеродсодержащего сырья или частичного окисления жидкого или твердого углеродсодержащего сырья.
- 10.2. При использовании диоксида углерода (${}^{\text{CO}}_2$), образованного в процессе производства аммиака, в качестве сырья для получения карбамида (мочевины), товарного ${}^{\text{CO}}_2$ или других химических веществ, выбросы ${}^{\text{CO}}_2$ от производства аммиака должны быть определены за вычетом количества ${}^{\text{CO}}_2$ уловленного и использованного для производства других веществ.
- 10.3. Выбросы CO_2 , связанные с использованием топлива для осуществления технологических процессов производства аммиака должны учитываться в данной категории. Выбросы

от стационарного сжигания топлива для других технологических и энергетических целей определяются в соответствии с пунктом 1 "Стационарное сжигание топлива" настоящего приложения.

10.4. Количественное определение выбросов CO_2 от производства аммиака выполняется расчетным методом по формуле (10.1):

$$E_{\text{CO}_{2,y}} = \sum_{j=1}^{n} \left(\text{RMC}_{j,y} \times \text{EF}_{\text{CO}2,j,y} \times \text{OF}_{j,y} \right) - R_{\text{CO}2}, \quad (10.1)$$

где:

 $\mathbb{E}_{\mathrm{CO}_{2,y}}$ - выбросы CO_2 от производства аммиака за период у, т CO_2 ;

 ${
m RMC}_{j,y}$ - расход углеродсодержащего сырья (топлива) ј на производство аммиака за период у, тыс.м 3 , т, т у.т. или ТДж;

 $EF_{CO2,j,y}$ - коэффициент выбросов CO_2 от использования углеродсодержащего сырья (топлива) ј за период у, т CO_2 /ед.;

 $\bigcirc F_{j,y}$ - коэффициент окисления углеродсодержащего сырья (топлива) j, доля;

 \mathbb{R}_{CO2} - масса \mathbb{CO}_2 , образовавшегося в процессе производства аммиака, извлеченного для дальнейшего использования в качестве сырья для получения товарной продукции, т;

- ј вид углеродсодержащего сырья (топлива);
- n количество видов углеродсодержащего сырья (топлива), используемых за период у.
- 10.5. Расход углеродсодержащего сырья и топлива (${
 m RMC}_{j,y}$), используемого на технологические и энергетические цели при производстве аммиака, принимается по фактическим данным организации за отчетный период.

При отсутствии фактических данных по компонентному химическому составу газообразного топлива и содержанию углерода в твердом и жидком топливе за отчетный период используются значения коэффициентов выбросов для соответствующих видов топлива, представленные в таблице 1.1 настоящего приложения, либо иные справочные данные в соответствии с пунктом 9 настоящей Методики.

- 10.7. Коэффициент окисления (${}^{\bigcirc}F_{j,y}$) принимается для всех видов газообразного, жидкого и твердого углеродсодержащего сырья (топлива) по умолчанию равным 1,0 (соответствует 100% окислению).
- 10.8. Если в процессе производства аммиака часть образованного углекислого газа (${\rm CO_2}$) улавливается и используется в качестве сырья для производства карбамида и другой товарной продукции, содержащей углерод, то объем выбросов ${\rm CO_2}$ от производства аммиака должен быть скорректирован на соответствующее количество ${\rm CO_2}(\mathbb{R}_{\rm CO2})$ на основе оценок или материальных балансов производства.

- 11. Производство азотной кислоты, капролактама, глиоксаля и глиоксиловой кислоты
- 11.1. Данная категория источников выбросов включает выбросы $N_2\mathbb{O}$ при производстве азотной кислоты, капролактама, глиоксаля и глиоксиловой кислоты, образующиеся как побочный продукт при каталитическом окислении аммиака и протекании химических реакций с окислами азота и азотной кислотой в процессе производства. Выбросы $N_2\mathbb{O}$ зависят от применяемых технологий очистки и разрушения отходящих газов, которые необходимо принимать во внимание при количественном определении выбросов парниковых газов.
- 11.2. Выбросы от сжигания топлива в химическом производстве для энергетических и технологических целей определяются в соответствии с пунктом 1 "Стационарное сжигание топлива" настоящего приложения и не включаются в данную категорию.
- 11.3. Количественное определение выбросов $N_2 \bigcirc$ при производстве азотной кислоты, капролактама, глиоксаля и глиоксиловой кислоты осуществляется одним из следующих методов:

расчет выбросов $N_2\mathbb{O}$ на основе данных измерений концентрации $N_2\mathbb{O}$ и расхода отходящих газов от установок химического производства;

расчет выбросов $N_2 \mathbb O$ на основе данных о производстве химической продукции и коэффициентах выбросов.

Выбор метода количественного определения выбросов осуществляется организациями исходя из доступности исходных данных для выполнения расчетов по формулам и обеспечения наилучшей точности результатов.

- 11.4. Расчет выбросов $N_2\mathbb{O}$ на основе данных измерений концентрации $N_2\mathbb{O}$ и расхода отходящих газов от установок химического производства:
 - 11.4.1. Расчет выбросов выполняется по формуле (11.1)

$$E_{N2O,i,y} = Q_{i,y} \times C_{N2O,i,y} \times 10^{-9}$$
, (11.1)

где:

 $\mathbb{E}_{\mathrm{N2O},i,y}$ - выбросы $\mathrm{N_2O}$ от производства химической продукции і за период у, т $\mathrm{N_2O}$;

 $Q_{i,y}$ - расход отходящих газов от установки производства химической продукции і выбрасываемых в атмосферу за период у, м 3 (кг);

 $C_{N2O,i,y}$ - средняя концентрация N_2O в отходящих газах, выбрасываемых в атмосферу от установки производства химической продукции і за период у, мг/м 3 (мг/кг);

- і вид производимой химической продукции (азотная кислота, капролактам, глиоксаль и глиоксиловая кислота).
- 11.4.2. Расход отходящих газов от установки производства химической продукции і выбрасываемых в атмосферу ($\mathbb{Q}_{i,y}$) определяется путем непрерывных или периодических измерений. Периодические измерения должны проводиться не реже 1 раза в три месяца и использоваться для определения расхода отходящих газов с учетом продолжительности работы установки в течение отчетного периода.

- 11.4.3. Концентрация $N_2\mathbb{O}$ в отходящих газах, выбрасываемых в атмосферу, определяется путем непрерывных или периодических измерений. Измерения концентрации $N_2\mathbb{O}$ в отходящих газах должны проводиться после всех применяемых систем очистки и разрушения отходящих газов. Периодические измерения должны проводиться не реже 1 раза в три месяца.
- 11.5. Расчет выбросов $N_2 \mathbb{O}$ на основе данных о производстве химической продукции и коэффициентах выбросов:
 - 11.5.1. Расчет выполняется по формуле (11.2):

$$E_{N2O,i,y} = P_{i,y} \times EF_{N2O,i,y} \times 10^{-3}$$
, (11.2)

 $\mathbb{E}_{\mathrm{N2O},i,y}$ - выбросы $\mathrm{N_2O}$ от производства химической продукции і за период у, т $\mathrm{N_2O}$;

 $P_{i,y}$ - производство химической продукции і за период у, т;

 $\mathrm{EF}_{\mathrm{N2O},i,y}$ - коэффициент выбросов $\mathrm{N_2O}$ от производства химической продукции і за период у, кг/т;

- і вид производимой химической продукции (азотная кислота, капролактам, глиоксаль и глиоксиловая кислота).
- 11.5.2. Производство химической продукции ($P_{i,y}$) принимается по фактическим данным организации за отчетный период. Производство химической продукции (азотная кислота, капролактам, глиоксаль и глиоксиловая кислота) должно включать общее количество производимой продукции данного вида в организации, а не только товарной продукции, отпущенной сторонним потребителям. Количество произведенной азотной кислоты определяется в пересчете на 100% азотную кислоту.
- 11.5.3. Коэффициент выбросов ($EF_{\mathrm{N2O},i,y}$) рассчитывается по формуле (11.3), а при отсутствии возможности выполнения необходимых измерений принимается по таблице 11.1 настоящего приложения.

$$EF_{N2O,i,y} = \frac{Q_{i,y} \times C_{N2O,i,y} \times 10^{-9}}{P_{i,y}}, \quad (11.3)$$

где:

 $\mathrm{EF}_{\mathrm{N2O},i,y}$ - коэффициент выбросов $\mathrm{N}_2\mathrm{O}$ от производства химической продукции і за период у, кг/т;

 $\mathbb{Q}_{i,\,y}$ - средний расход отходящих газов от установки производства химической продукции і выбрасываемых в атмосферу за период у, м 3 /час (кг/час);

 $C_{
m N2O,i,y}$ - средняя концентрация $N_2{
m O}$ в отходящих газах, выбрасываемых в атмосферу от установки производства химической продукции і за период у, мг/м 3 (мг/кг);

- $P_{i,y}$ среднее производство химической продукции і за период у, т/час;
- і вид производимой химической продукции (азотная кислота, капролактам, глиоксаль и глиоксиловая кислота).
- 11.5.4. Коэффициент выбросов $N_2{\mathbb O}$ от производства химической продукции і должен определяться ежегодно на основе измерений расхода отходящих газов, концентрации $N_2{\mathbb O}$ в отходящих газах и производства продукции за соответствующий период, выполненных при нормальных условиях ведения технологического процесса. Измерения концентрации $N_2{\mathbb O}$ в отходящих газах должно проводиться после всех применяемых систем очистки и разрушения отходящих газов. За исключением сжигания в открытых факельных системах, измерения в которых проводить в коллекторе перед сжиганием. Производство химической продукции должно включать общее количество производимой продукции данного вида в организации, а не только товарной продукции, отпущенной сторонним потребителям.

Таблица 11.1 Коэффициенты выбросов $N_2\mathbb{O}$ для производства азотной кислоты капролактама, глиоксаля, глиоксиловой кислоты

1					
Коэффициент выбросов					
Производство азотной кислоты					
2 кг $ mN_2$ O /тонну азотной кислоты					
2,5 кг $ mN_2^{\odot}$ /тонну азотной кислоты					
5 кг $ mN_2$ O /тонну азотной кислоты					
7,5 кг $ mN_2^{\odot}$ /тонну азотной кислоты					
9 кг $ mN_2$ O /тонну азотной кислоты					
0,52 т $ m N_2$ O /тонну глиоксаля					
0,10 т $ m N_2$ O /тонну глиоксаля					
0,10 т $ m ~N_2$ O /тонну глиоксиловой кислоты					
0,02 т $ m ~N_2$ O /тонну глиоксиловой кислоты					
9,0 кг $ mN_2$ O /тонну капролактама					

Технология получения гидроксиламин сульфата методом восстановления NO, полученного предварительной парокислородной конверсией аммиака

12. Нефтехимическое производство

- 12.1. Данная категория источников выбросов парниковых газов включает выбросы CO_2 в нефтехимическом производстве, возникающие при получении метанола, этилена и пропилена, этилендихлорида, окиси этилена, акрилонитрила, сажи различными методами (реформинг, крекинг, частичное окисление и другие) в результате дожигания отходящих технологических газов и отходов производства в печах дожига и факельных установках, отведения технологических газов в атмосферу без сжигания, а также сжигании отходящих технологических газов, побочных продуктов и отходов производства для энергетических и технологических целей.
- 12.2. К нефтехимическому производству относится производство указанных веществ, получаемых как конечный товарный продукт, так и промежуточное сырье для производства других веществ. Выбросы от получения других продуктов нефтехимического производства оцениваются организациями в соответствии с 12 настоящего приложения.* К нефтехимическому производству не относится продукция, получаемая как побочная в процессе других производств.
 - * Текст документа соответствует оригиналу. Примечание изготовителя базы данных.
- 12.3. В данную категорию источников парниковых газов не включаются выбросы ${\rm CH_4}$ и ${\rm N_2O}$. Выбросы ${\rm CO_2}$, связанные со сжиганием топлива для осуществления технологических процессов нефтехимического производства, учитываются в данной категории, если учет данного топлива не осуществляется раздельно.
- 12.4. Выбросы от стационарного сжигания топлива для технологических и энергетических целей определяются в соответствии с пунктом 1 "Стационарное сжигание топлива" настоящего приложения.
- 12.5. Количественное определение выбросов CO_2 от нефтехимического производства осуществляется для отдельных источников (технологических процессов, производственных объектов) или групп источников одним их следующих методов:

расчет выбросов CO_2 на основе углеродного баланса нефтехимического производства по формуле (12.1);

расчет выбросов CO_2 для нефтехимического производства на основе раздельного определения выбросов от стационарного сжигания топлива, фугитивных выбросов и выбросов от сжигания на факелах (12.2).

Выбор метода количественного определения выбросов осуществляется организациями исходя из доступности исходных данных для выполнения расчетов по формулам (12.1, 12.2) и обеспечения наилучшей точности результатов.

- 12.6. Расчет выбросов СО₂ на основе углеродного баланса нефтехимического производства
- 12.6.1. Расчет выбросов выполняется по формуле:

$$E_{\text{CO2},y} = \left[\sum_{k=1}^{m} \left(\text{RMC}_{k,i,y} \times W_{\text{C},k,y} \right) - \left(\sum_{i=1}^{n} \left(\text{PP}_{i,y} \times W_{\text{C},i,y} \right) + \sum_{j=1}^{l} \left(\text{SP}_{j,i,y} \times W_{\text{C},i,y} \right) \right) \right] \times 3,664,$$
(12.1)

где:

 $\mathbb{E}_{\mathbb{CO}_2,\mathbb{V}}$ - выбросы \mathbb{CO}_2 от производства нефтехимической продукции за период у, т \mathbb{CO}_2 ;

 $\mathrm{RMC}_{k,i,y}$ - расход углеродсодержащего сырья k на производство нефтехимического продукта i за период у, т, тыс.м 3 т у.т. или ТДж;

 $\mathbb{W}_{\mathbb{C},k,\,\mathbb{V}}$ - содержание углерода в углеродсодержащем сырье к за период у, т С/ед.;

 $\mathbb{PP}_{i,\mathbb{V}}$ - производство нефтехимического продукта і за период у, т, тыс.м 3 , т у.т. или ТДж;

 $\mathbb{W}_{\mathbb{C},i,y}$ - содержание углерода в нефтехимическом продукте і за период у, т С/ед.;

 ${\mathbb SP}_{j,i,y}$ - производство вторичного (сопутствующего) продукта ј в процессе производства нефтехимического продукта і за период у, т, тыс.м 3 , т у.т. или ТДж;

 $W_{C,i,v}$ - содержание углерода во вторичном (сопутствующем) продукте ј за период у, т С/ед.;

- і вид производимой нефтехимической продукции;
- k вид углеродсодержащего сырья, используемого для производства нефтехимической продукции;
- j вид вторичного (сопутствующего) продукта, произведенного в процессе производства нефтехимической продукции;
 - n количество видов нефтехимической продукции;
- m количество видов углеродсодержащего сырья, используемого для производства нефтехимической продукции;
- 1 количество вторичных (сопутствующих) продуктов при производстве нефтехимической продукции.

При расчете выбросов CO2 на основе углеродного баланса нефтехимического производства выбросы от сжигания на факеле не учитываются.

- 12.6.2. Производство нефтехимической продукции (${}^{P}P_{i,y}$), расход углеродсодержащего сырья на производство нефтехимического продукта (${}^{RMC}{}_{k,i,y}$), производство вторичных (сопутствующих) продуктов при производстве нефтехимической продукции (${}^{SP}{}_{j,i,y}$) принимается по фактическим данным организации за отчетный период. Количество вторичных (сопутствующих) нефтехимических продуктов при производстве метанола, этилендихлорида, окиси этилена и сажи принимается равным нулю, поскольку не образуются в процессе производства.
- 12.6.3. Содержание углерода в углеродсодержащем сырье ($W_{C,k,y}$), основных и вторичных (сопутствующих) продуктах нефтехимического производства ($W_{C,i,y}$, $W_{C,j,y}$) определяется по фактическим данным организации за отчетный период, рассчитывается в соответствии с пунктом 1 "Стационарное сжигание топлива" настоящего приложения или при отсутствии необходимых данных принимается по таблице 1.1 настоящего приложения.

При отсутствии необходимых данных о содержании углерода в настоящей Методике допускается использование справочных данных из других источников в соответствии с пунктом 9

настоящей Методики.

При расчете выбросов CO_2 на основе углеродного баланса нефтехимического производства выбросы от сжигания на факеле не учитываются.

- 12.7. Расчет выбросов CO_2 на основе раздельного определения выбросов от стационарного сжигания топлива, фугитивных выбросов и выбросов от сжигания на факелах:
 - 12.7.1. Расчет выполняется по формуле:

$$E_{CO2,y} = E_{CO2,crail,y} + E_{CO2,\phiyrmins,y} + E_{CO2,\phiaker,y},$$
 (12.2)

где:

 $\mathbb{E}_{\mathrm{CO2,y}}$ - выбросы \mathbb{CO}_2 от производства нефтехимической продукции за период у, т \mathbb{CO}_2 ;

 $E_{\text{CO2,стац.,y}}$ - выбросы CO_2 от стационарного сжигания топлива и побочных продуктов при производстве нефтехимической продукции за период у, т CO_2 ;

 $\mathbb{E}_{\text{CO2},\Phi\text{утитив},y}$ - фугитивные выбросы \mathbb{CO}_2 при производстве нефтехимической продукции за период у, т \mathbb{CO}_2 ;

 $E_{\text{CO2}, \phi \text{акел.}, y}$ - выбросы CO_2 при сжигании углеводородных газов на факельной установке при производстве нефтехимической продукции за период у, т CO_2 .

- 12.7.2. Расчет выбросов ${\rm CO}_2$ от стационарного сжигания топлива в нефтехимическом производстве (${\rm E}_{{\rm CO2,ctau},y}$) должен проводиться в соответствии с пунктом 1 "Стационарное сжигание топлива" настоящего приложения.
- 12.7.3. Расчет фугитивных выбросов ${\rm CO}_2$ (${\rm E}_{{\rm CO2}, \Phi {\rm YPTETEB}, {\rm Y}}$), возникающих в результате отведения в атмосферу углеводородных газов нефтехимического производства без дожигания в печах дожига, факельных установках или каталитического окисления должен проводиться в соответствии с пунктом 3 "Фугитивные выбросы" настоящего приложения.
- 12.7.4. Расчет выбросов CO_2 от сжигания углеводородных газов на факельной установке при производстве нефтехимической продукции ($E_{CO2, \varphi a x e \pi, y}$) должен проводиться в соответствии с пунктом 2 "Сжигание в факелах" настоящего приложения.

Таблица 12.1 Содержание углерода в сырье и продуктах нефтехимического производства

Вещество	Содержание углерода, т С/т
Ацетонитрил	0,5852
Акрилонитрил	0,6664
Бутадиен	0,888

	·
Сажа	0,970
Сырье углеродной сажи	0,900
Этан	0,856
Этилен	0,856
Этилендихлорид	0,245
Этиленгликоль	0,387
Окись этилена	0,545
Циановодород	0,4444
Метанол	0,375
Метан	0,749
Пропан	0,817
Пропилен	0,8563
Мономер хлористый винил	0,384

13. Производство фторсодержащих веществ

13.1. Данная категория источников выбросов включает выбросы фторсодержащих соединений CHF_3 (трифторметана, ГФУ-23), образующегося как побочный продукт в процессе производства CHCF_2 (хлордифторметана, ГХФУ-22, хладон-22) и выбросы SF_6 (гексафторид серы), возникающие в процессе производства элегаза (SF_6).

При количественном определении выбросов парниковых газов ${
m CHF}_3$ и ${
m SF}_6$ необходимо принимать во внимание применяемые технологии разрушения отходящих газов.

- 13.2. Выбросы от сжигания топлива в химическом производстве для энергетических и технологических целей определяются в соответствии с пунктом 1 "Стационарное сжигание топлива" настоящего приложения и не включаются в данную категорию.
- 13.3. Количественное определение выбросов ${
 m CHF}_3$ и ${
 m SF}_6$ при производстве фторсодержащих соединений осуществляется одним из следующих методов:

расчет выбросов ${
m CHF_3}$ и ${
m SF_6}$ на основе данных измерений их концентраций и расхода отходящих газов от установок химического производства;

расчет выбросов ${
m CHF}_3$ и ${
m SF}_6$ на основе данных о производстве химической продукции и коэффициентах выбросов.

Выбор метода количественного определения выбросов осуществляется организациями исходя из доступности исходных данных для выполнения расчетов по формулам и обеспечения наилучшей точности результатов количественного определения.

- 13.4. Расчет выбросов \mbox{CHF}_3 и \mbox{SF}_6 на основе измерения их концентраций и расхода отходящих газов от установок химического производства:
 - 13.4.1. Расчет выбросов выполняется по формуле:

$$E_{j,i,y} = Q_{i,y} \times C_{j,i,y} \times 10^{-9}$$
, (13.1)

 $E_{\,j,i,y}$ - выбросы j-парникового газа от производства химической продукции i за период y, т;

 $\mathbb{Q}_{i,y}$ - расход отходящих газов от установки производства химической продукции і, выбрасываемых в атмосферу за период у, м 3 (кг);

 $C_{j,i,y}$ - средняя концентрация j-парникового газа в отходящих газах, выбрасываемых в атмосферу от установки производства химической продукции i за период y, мг/м 3 (мг/кг);

- ј вид парникового газа (CHF_3, SF_6);
- і вид производимой химической продукции (ГХФУ-22, SF_6).
- 13.4.2. Расход отходящих газов от установки производства химической продукции і выбрасываемых в атмосферу ($\mathbb{Q}_{i,y}$) определяется путем непрерывных или периодических измерений. Периодические измерения должны проводиться не реже 1 раза в три месяца и использоваться для определения расхода отходящих газов с учетом продолжительности работы установки в течение отчетного периода.
- 13.4.3. Концентрация парниковых газов ($^{\rm CHF}_3$, $^{\rm SF}_6$) в отходящих газах, выбрасываемых в атмосферу, определяется путем непрерывных или периодических измерений. Измерения концентрации $^{\rm CHF}_3$, $^{\rm SF}_6$ в отходящих газах должны проводиться после всех применяемых систем очистки и разрушения отходящих газов. Периодические измерения должны проводиться не реже 1 раза в три месяца.
- 13.5. Расчет выбросов ${
 m CHF_3}$ и ${
 m SF_6}$ на основе данных о производстве химической продукции и коэффициентах выбросов:
 - 13.5.1. Расчет выбросов выполняется по формуле:

$$E_{j,i,y} = P_{i,y} \times EF_{j,i,y} \times 10^{-3}$$
, (13.2)

где:

 $E_{i,i,v}$ - выбросы j-парникового газа от производства химической продукции i за период y, т;

 $P_{i,y}$ - производство химической продукции і за период у, т;

 $\mathrm{EF}_{j,i,y}$ - коэффициент выбросов j-парникового газа от производства химической продукции i за период y, кг/т;

- j вид парникового газа ($^{\text{CHF}}_3$, $^{\text{SF}}_6$);
- і вид производимой химической продукции (ГХФУ-22, ${\mathbb S}{\mathbb F}_6$).

- 13.5.2. Производство химической продукции ($P_{i,y}$) принимается по фактическим данным организации за отчетный период. Производство химической продукции (ГХФУ-22, SF_6) должно включать общее количество производимой продукции данного вида в организации, а не только товарной продукции, отпущенной сторонним потребителям.
- 13.5.3. Коэффициент выбросов ($^{EF}_{j,i,y}$) рассчитывается по формуле (13.3), а при отсутствии возможности выполнения необходимых измерений принимается по данным мониторинга выбросов парниковых газов, проведенного в период 2008-2012 гг. в рамках проектов совместного осуществления в соответствии со статьей 6 Киотского протокола 1 .

$$EF_{j,i,y} = \frac{Q_{i,y} \times C_{j,i,y} \times 10^{-6}}{P_{i,y}}, \quad (13.3)$$

 $\mathrm{EF}_{j,i,y}$ - коэффициент выбросов j-парникового газа от производства химической продукции i за период y, кг/т;

 $Q_{i,y}$ - средний расход отходящих газов от установки производства химической продукции і выбрасываемых в атмосферу за период у, м 3 /час (кг/час);

 $C_{j,i,y}$ - средняя концентрация j-парникового газа в отходящих газах, выбрасываемых в атмосферу от установки производства химической продукции i за период y, мг/м 3 (мг/кг);

 $P_{i,y}$ - среднее производство химической продукции і за период у, т/час;

- j вид парникового газа ($ext{CHF}_3$, $ext{SF}_6$);
- і вид производимой химической продукции (ГХФУ-22, SF_6).
- 13.5.4. Коэффициенты выбросов ${
 m CHF}_3$ и ${
 m SF}_6$ от производства химической продукции ГХФУ-22 и ${
 m SF}_6$ соответственно должны определяться на основе измерений расхода отходящих газов, концентрации ${
 m CHF}_3$ и ${
 m SF}_6$ в отходящих газах и производства продукции за соответствующий период, выполненных при нормальных условиях ведения технологического процесса. Измерения концентрации ${
 m CHF}_3$ и ${
 m SF}_6$ в отходящих газах должны проводиться после всех применяемых систем разрушения отходящих газов. Производство химической продукции должно включать общее количество производимой продукции данного вида в организации, а не только товарной продукции, отпущенной сторонним потребителям.
 - 14. Черная металлургия
 - 14.1. Данная категория источников выбросов парниковых газов включает выбросы СО2 при

¹ Киотский протокол к Рамочной конвенции Организации Объединенных Наций об изменении климата, подписанный в г.Киото 11 декабря 1997 г. (Собрание законодательства Российской Федерации, 2005, N 10, ст.764).

производстве железорудных окатышей, агломерата, железа прямого восстановления, чугуна, стали, возникающие в результате окисления углерода топлива, сырья, восстановителей, углеродсодержащих материалов и разложения карбонатов с учетом сохранения части углерода в составе основных и сопутствующих продуктов и отходов производства.

- 14.2. Выбросы ${\rm CO}_2$ на металлургических предприятиях, возникающие при стационарном сжигании топлива, не связанном непосредственно с производством железорудных окатышей, агломерата, железа прямого восстановления, чугуна, стали, а также при производстве извести и кокса, определяются в соответствии с пунктом 1 "Стационарное сжигание топлива" настоящего приложения, либо в целом для металлургического производства по формуле (14.2).
- 14.3. Выбросы ${
 m CH_4}$ и ${
 m N_2O}$, фугитивные выбросы, выбросы от обращения с отходами потребления и производства в данной категории не учитываются.
- 14.4. Количественное определение выбросов ${\rm CO}_2$ для предприятий черной металлургии осуществляется одним из следующих методов:

расчет выбросов CO_2 для каждого металлургического процесса в отдельности на основе углеродного баланса по формуле (14.1);

расчет выбросов CO_2 от всех металлургических процессов и иных источников предприятия в совокупности на основе сводного углеродного баланса по формуле (14.2).

Выбор метода количественного определения выбросов ${\rm CO}_2$ осуществляется организациями самостоятельно исходя из доступности исходных данных.

14.4.1. Расчет выбросов \mathbb{CO}_2 для каждого металлургического процесса в отдельности (производства железорудных окатышей, агломерата, железа прямого восстановления, чугуна и стали) выполняется на основе углеродного баланса в целом для металлургического процесса или с выделением отдельных источников или групп источников (производственных объектов, технологического оборудования) по формуле:

$$E_{\text{CO2},k,y} = \left[\left(\sum_{i} \left(\text{RMC}_{i,k,y} \times W_{\text{C},i,y} \right) + \sum_{j} \left(\text{FC}_{j,k,y} \times W_{\text{C},j,y} \right) \right) - \left(\sum_{k} \left(P_{k,y} \times W_{\text{C},k,y} \right) + \sum_{l} \left(\text{SP}_{l,k,y} \times W_{\text{C},l,y} \right) \right) \right]$$
, (14.1)

где:

 $\mathbb{E}_{\mathrm{CO2},k,y}$ - выбросы \mathbb{CO}_2 от производства металлургической продукции-к за период у, т \mathbb{CO}_2 ;

 $\mathrm{RMC}_{i,k,y}$ - расход і-углеродсодержащего сырья, материала и восстановителя на производство металлургической продукции-k за период у, т;

 $\mathbb{W}_{\mathbb{C},i,y}$ - содержание углерода в i-углеродсодержащем сырье, материале и восстановителе за период у, т;

 $FC_{j,k,y}$ - расход j-топлива на производство металлургической продукции-k за период y, т, тыс.м 3 , т y.т. или ТДж;

 $\mathbb{W}_{\mathbb{C},j,y}$ - содержание углерода в ј-топливе за период у, т С/ед.;

 $\mathbb{P}_{k,y}$ - производство металлургической продукции-k за период у, т;

 $\mathbb{W}_{C,k,v}$ - содержание углерода в металлургической продукции-k за период у, т С/т;

 ${
m SP}_{l,k,y}$ - производство сопутствующей продукции или образование отходов, не возвращенных в производство металлургической продукции-k, за период у, т, тыс.м 3 , т у.т. или ТДж;

 $\mathbb{W}_{\mathbb{C},\mathbb{L}_{\mathbb{V}}}$ - содержание углерода в сопутствующей продукции или отходах, т С/ед.;

- k вид производимой металлургической продукции (железорудные окатыши, агломерат, железо прямого восстановления, чугун, сталь);
- і вид углеродсодержащего сырья или материала (руда, агломерат, кокс, известняк и другие виды в зависимости от процесса);
 - ј вид топлива (природный газ, коксовый газ, мазут и другие виды в зависимости от процесса);
- 1 вид сопутствующей продукции или отходов (доменный газ, шлак и другие виды в зависимости от процесса).

Количество производимой металлургической продукции ($P_{k,y}$), сопутствующей продукции и образующихся отходов ($SP_{l,k,y}$), расходуемых углеродсодержащего сырья, материалов ($PMC_{i,k,y}$) и топлива ($PC_{j,k,y}$) принимается по фактическим данным организации за отчетный период в соответствии с пунктом 9 настоящей Методики.

Расход сырья, материалов и топлива, а также выпуск основной и сопутствующей продукции и образование отходов определяются в границах объектов соответствующих промышленных процессов, включая вспомогательные объекты производства.

Производство сопутствующей продукции или образование отходов (${}^{\rm SP}_{l,k,y}$) должно отражать только их количество, выведенное за границы объектов соответствующих технологических процессов (не возвращенных в производство), при этом не должно включать коксовый газ, доменный газ и другие технологические газы, сжигаемые на факельных установках или в печах дожига.

14.4.2. Расчет выбросов CO_2 от производства железорудных окатышей, агломерата, железа прямого восстановления, чугуна, стали и стального проката в совокупности или совместно с выбросами CO_2 от других производств (производства кокса, извести, ферросплавов) и источников выбросов металлургического предприятия производится по формуле (14.2):

$$E_{CO2,y} = \left[\sum_{i} \left(M_{\text{вход},i,y} \times W_{C,i,y} \right) - \sum_{j} \left(M_{\text{выход},j,y} \times W_{C,j,y} \right) - \sum_{k} \left(\Delta M_{\text{sanac},k,y} \times W_{C,k,y} \right) \right] \times 3,664,$$
(14.2)

где:

 $E_{\mathrm{CO2,y}}$ - выбросы CO_2 от металлургического производства (предприятия) за период у, т CO_2 ;

 $M_{\mathtt{вход},i,y}$ - количество і-углеродсодержащего ресурса (кроме биомассы), поступившего на вход металлургического производства (предприятия) за периода у, т или тыс.м 3 ;

 $W_{C,i,y}$ - содержание углерода в i-углеродсодержащем ресурсе, поступившем на вход металлургического производства, т С/т или т С/тыс.м 3 ;

 $M_{\mathtt{выход.},j,y}$ - количество j-углеродсодержащего ресурса (кроме биомассы), выведенного за пределы металлургического производства (предприятия), в том числе в виде горючих газов за период у, т или тыс.м 3 ;

 $\mathbb{W}_{\mathbb{C},j,y}$ - содержание углерода в j-углеродсодержащем ресурсе, выведенном за пределы металлургического производства (предприятия), т \mathbb{C}/\mathbb{T} или т \mathbb{C}/\mathbb{T} ыс.м 3 ;

 $\Delta M_{\text{запас},k,y}$ - изменение запаса k-углеродсодержащего ресурса (кроме биомассы) на металлургическом производстве (предприятии) за период у, т или тыс.м 3 ;

 $W_{C,k,y}$ - содержание углерода в k-углеродсодержащем ресурсе, имевшегося в запасе на металлургическом производстве (предприятии) на начало и (или) на конец периода у, т С/т или т С/тыс.м 3 .

Количество углеродсодержащих ресурсов, поступивших на вход и отпущенных за пределы указанных производств (предприятия), в том числе с сырьем, материалами, топливом, продукцией, технологическими газами, отходами, принимается по фактическим данным организации за отчетный период.

При определении объема выбросов ${}^{\rm CO}_2$ по металлургическому предприятию в целом учитываются только углеродсодержащие ресурсы, поступившие на предприятие со стороны и отпущенные на сторону, а также изменение запасов углеродсодержащих ресурсов на предприятии за отчетный период в соответствии с пунктом 7 настоящей Методики.

14.5. Перечень используемых видов углеродсодержащего сырья, материалов и топлива, а также выпускаемой основной и сопутствующей продукции и образующихся отходов формируется для идентичных металлургических процессов в отдельности или металлургического предприятия в целом на основе фактических данных организации. При выполнении количественного определения выбросов организациям необходимо учитывать:

для производства окатышей - железосодержащее сырье (при наличии в нем углерода), известняк, доломит, газообразное и жидкое топливо на обжиг окатышей, произведенные обожженные окатыши;

для производства агломерата - железосодержащее сырье (при наличии в нем углерода), известняк, доломит, твердое топлива, добавляемое в шихту, газообразное и жидкое топливо на зажигание шихты, произведенный агломерат;

для производства железа прямого восстановления - железосодержащее сырье (при наличии в нем углерода), природный газ, произведенное железо прямого восстановления или горячебрикетированное железо;

для производства чугуна - агломерат, окатыши, другое железосодержащее сырье (при наличии в нем углерода), известняк, кокс, уголь, газообразное и жидкое топливо, пылеугольное топливо, произведенный чугун и доменный газ;

для производства стали - чугун, чугунный лом, железо прямого восстановления, стальной лом, другое железосодержащее сырье (при наличии в нем углерода), углеродсодержащие материалы (углеродные порошки, коксик и прочие), газообразное топливо, электроды, произведенная сталь (непрерывнолитая заготовка, слитки, стальное литье и так далее).

Для каждого процесса организациям следует учитывать образование отходов и побочных продуктов, не возвращаемых в производство: шлаки, шламы, пыль газоочистки и другие, при наличии необходимых данных об их количестве и содержании в них углерода.

Перечень углеродсодержащего сырья, материалов и топлива, а также выпускаемой основной и сопутствующей продукции и образующихся отходов расходных материалов и продукции регулярно пересматриваются с целью учета всех видов углеродсодержащих ресурсов, оказывающих существенное влияние на количество выбросов парниковых газов.

Древесина, древесные отходы, древесный уголь или иные материалы биологического происхождения, используемые в технологических процессах в качестве топлива или восстановителя, не учитываются при определении выбросов \mathbb{CO}_2 .

14.6. Содержание углерода в металлургической продукции, сопутствующей продукции и образованных отходах, углеродсодержащем сырье, восстановителях, материалах и топливе принимается по фактическим данным организации за отчетный период или по таблице 14.1 настоящего приложения.

При отсутствии презентативных данных о содержании углерода в настоящей Методике допускается использование справочных данных из других источников в соответствии с пунктом 9 настоящей Методики.

Значения содержания углерода для топлива и восстановителей рассчитывается в соответствии с пунктом 1 "Стационарное сжигание топлива" настоящего приложения или при отсутствии необходимых данных принимается по таблице 1.1 настоящего приложения.

Значение содержания углерода для топлива и восстановителей должно соответствовать единицам измерения и условиям, при которых определяется расход соответствующих видов топлива и восстановителей.

При отсутствии необходимых данных о содержании углерода в настоящей Методике допускается использование справочных данных из других источников в соответствии с пунктом 9 настоящей Методики.

Таблица 14.1 Содержание углерода в сырье, материалах и продукции металлургического производства

Сырье, материал, продукция	Содержание углерода, С/т
Железо прямого восстановления	0,017
Железо горячего брикетирования	0,013
Сталь, стальной лом	0,0025
Чугун, чугунный лом	0,043
Электроды для электродуговых печей	0,82
Углеродсодержащие материалы для сталеплавильных печей	0,83
Известняк	0,12
Доломит	0,13

- 15.1. Данная категория источников выбросов парниковых газов включает выбросы ${\rm CO}_2$ при производстве ферросплавов (феррохрома, ферромарганца, ферромолибдена, ферроникеля, ферросилиция, ферротитана, ферровольфрама, феррованадия, силикомарганца и других видов ферросплавов или металлического кремния), возникающие в результате окисления углерода топлива, сырья, восстановителей, углеродсодержащих материалов и разложения карбонатов с учетом сохранения части углерода в составе ферросплавов и сопутствующих продуктах и отходах производства.
- 15.2. Выбросы CO_2 , возникающие при стационарном сжигании топлива для энергетических и технологических целей, не связанных непосредственно с производством ферросплавов, определяются с использованием пункта 1 "Стационарное сжигание топлива" настоящего приложения.

В тех случаях, когда производство ферросплавов входит в состав предприятия черной металлургии, объем выбросов CO_2 от производства ферросплавов определяется в совокупности с выбросами CO_2 от других производств металлургического предприятия в порядке, предусмотренном в пункте 14 "Черная металлургия" настоящего приложения.

- 15.3. Выбросы ${
 m CH_4}$ и ${
 m N_2O}$, фугитивные выбросы, выбросы от обращения с отходами потребления и производства в данной категории не учитываются.
- 15.4. Количественное определение выбросов CO_2 выполняется на основе составления углеродного баланса ферросплавного производства с учетом всех входящих и выходящих материальных потоков по формуле (15.1):

$$E_{CO2,y} = \left| \left(\sum_{i} \left(RMC_{i,y} \times W_{C,i,y} \right) + \sum_{j} \left(FC_{j,y} \times W_{C,j,y} \right) \right) - \left(\sum_{k} \left(P_{k,y} \times W_{C,k,y} \right) + \sum_{l} \left(SP_{l,y} \times W_{C,l,y} \right) \right) \right| \times 3,664$$
(15.1)

где:

 $\mathrm{E}_{\mathrm{CO2,v}}$ - выбросы CO_2 от производства ферросплавов за период у, т CO_2 ;

 ${
m RMC}_{i,y}$ - расход i-углеродсодержащего сырья, материала и восстановителя на производство ферросплавов за период у, т;

 $\mathbb{W}_{\mathbb{C},i,y}$ - содержание углерода в i-углеродсодержащем сырье, материале и восстановителе за период у, т \mathbb{C}/τ ;

 $\mathrm{FC}_{j,y}$ - расхода j-топлива на производство ферросплавов за период y, т, тыс.м 3 , т y.т. или ТДж;

 $\mathbb{W}_{\mathrm{C},i,v}$ - содержание углерода в ј-топливе за период у, т С/ед.;

 $\mathbb{P}_{k,y}$ - производство k-ферросплава за период у, т;

 $\mathbb{W}_{\mathbb{C},k,y}$ - содержание углерода в k-ферросплаве за период у, т С/т;

 ${
m SP}_{l,y}$ - производство сопутствующей продукции или образование отходов при производстве ферросплавов за период у, т, тыс.м 3 , т у.т. или ТДж;

- $\mathbb{W}_{\mathbb{C},l,\mathbb{V}}$ содержание углерода в сопутствующей продукции или отходах, т С/т;
- k вид производимого ферросплава;
- і вид углеродсодержащего сырья, восстановителя, материала (руда, кокс, электроды, стальная стружка и так далее);
 - і вид топлива (природный газ, уголь и другие);
 - 1 вид сопутствующей продукции или отходов (шлак, пыль и другие).
- 15.5. Перечень используемых в технологическом процессе получения ферросплавов углеродсодержащего сырья, материалов и топлива, а также выпускаемой продукции формируется для идентичных технологических процессов в отдельности или для всех ферросплавных производств организации в совокупности на основе фактических данных организации.

При выполнении количественного определения выбросов от производства ферросплавов необходимо учитывать: сырье (при наличии в нем углерода), восстановители (коксовый орешек, кокс, уголь и другие), углеродсодержащие материалы и электроды, произведенные ферросплавы, образование отходов и побочных продуктов, не возвращаемых в производство (шлаки, шламы, пыль газоочистки и другие) при наличии необходимых данных об их количестве и содержании в них углерода.

Перечень углеродсодержащего сырья, материалов и топлива, а также выпускаемой основной и сопутствующей продукции и образующихся отходов расходных материалов и продукции регулярно пересматривается с целью учета всех видов углеродсодержащих ресурсов, оказывающих существенное влияние на количество выбросов парниковых газов.

Если в технологическом процессе в качестве топлива или восстановителя используются древесина, древесные отходы или древесный уголь, то данные виды материалов исключаются из расчетов.

- 15.6. Количество производимых ферросплавов ($P_{k,y}$), сопутствующей продукции и образованных отходов ($SP_{l,y}$), расходуемых углеродсодержащего сырья, материалов ($P_{l,y}$) и топлива ($P_{l,y}$) принимается по фактическим данным организации за отчетный период в соответствии с пунктом 10 настоящей Методики.
- 15.7. Расход сырья, материалов и топлива, а также выпуск основной и сопутствующей продукции и образование отходов определяются в границах объектов ферросплавного производства, включая вспомогательные объекты производства. Производство сопутствующей продукции или образование отходов ($SP_{l,y}$) должно отражать только их количество, выведенное за границы объектов соответствующих технологических процессов (не возвращенных в производство).
- 15.8. Содержание углерода в ферросплавах ($\mathbb{W}_{\mathbb{C},k,y}$), сопутствующей продукции и образованных отходах ($\mathbb{W}_{\mathbb{C},l,y}$) углеродсодержащем сырье и материалах ($\mathbb{W}_{\mathbb{C},i,y}$) и топливе ($\mathbb{W}_{\mathbb{C},j,y}$) принимается по фактическим данным организации за отчетный период или при отсутствии необходимых данных принимается по таблице 14.1 настоящего приложения. Значения содержания углерода для топлива и восстановителей рассчитывается в соответствии с пунктом 1 "Стационарное сжигание топлива" или при отсутствии необходимых данных принимается по таблице 1.1 настоящего приложения.

Значение содержания углерода для топлива и восстановителей должно соответствовать единицам измерения и условиям, при которых определяется расход соответствующих видов топлива и восстановителей.

При отсутствии необходимых данных о содержании углерода в настоящей Методике в соответствии с пунктом 9 настоящей Методики допускается использование справочных данных из других источников информации с обязательной ссылкой на источник информации.

- 16. Производство первичного алюминия
- 16.1. Данная категория включает выбросы парниковых газов, возникающие при электролитическом способе получения первичного алюминия:

перфторуглеродов (${\Bbb C} F_4$, ${\Bbb C}_2 F_6$) в результате "анодных эффектов" - отклонение технологических параметров в электролизерах;

диоксида углерода (\mathbb{CO}_2) при использовании анодной массы и предварительно обожженных анодов в результате окисления углерода анодной массы и анодов в электролизерах и при производстве предварительно обожженных анодов и прокалке кокса в результате сжигания топлива.

- 16.2. В данную категорию источников парниковых газов не включаются выбросы ${\rm CH_4}$ и ${\rm N_2O}$ от сжигания топлива для прокалки кокса и обжига анодов. Выбросы от стационарного сжигания топлива, использования карбонатов и других категорий источников выбросов парниковых газов определяются в случае наличия таких источников выбросов в организации с использованием пунктов 1 "Стационарное сжигание топлива", 5 "Производство кокса" и 17 "Прочие промышленные процессы" настоящего приложения.
 - 16.3. Выбросы перфторуглеродов от производства первичного алюминия:
- 16.3.1. Количественное определение выбросов перфторуглеродов (${\rm CF_4}$, ${\rm C_2F_6}$) осуществляется организациями расчетным методом по формулам (16.1-16.4). Расчет выбросов перфторуглеродов выполняется по отдельным корпусам электролиза с учетом применяемой технологии получения первичного алюминия. Суммарные значения выбросов перфторуглеродов по организации определяются путем суммирования выбросов по корпусам (сериям) электролиза. Производство электролитического алюминия (${\rm M}_{Al}$), включающего наработку первичного алюминия в электролизерах за отчетный период, определяется организациями по корпусам электролиза в соответствии с утвержденными на предприятиях технологическими регламентами.

$$E_{CO_{23388}}^{\text{ridy}} = \left(E_{CF_4} \times \Pi \Pi_{CF_4} + E_{C_2F_6} \times \Pi \Pi_{C_2F_6}\right) * M_{Al}, \quad (16.1)$$

где:

$$E_{CO_{2\,{
m MSB}}}^{
m mpy}$$
 - выбросы ПФУ, т ${
m CO}_{2\,{
m MSB}}$;

 $\Pi\Pi \Pi_{CF_4}$ - потенциал глобального потепления для CF_4 ;

 $\Pi\Pi\Pi_{C_2F_6}$ - потенциал глобального потепления для C_2F_6 ;

 \mathbf{M}_{Al} - выпуск алюминия (электролитического), т/год;

$$E_{CF_4} = S_{CF_4} * AEM / 1000,$$
 (16.2)

$$E_{C_2F_6} = E_{CF_4} * F_{C2F6/CF4},$$
 (16.3)

где:

 $E_{\mathit{CF_4}}$ - массовый выброс $\,{\rm CF_4}\,$ от производства алюминия, т $\,{\rm CF_4}\,$;

 $E_{C_2F_6}$ - массовый выброс $\mathrm{C}_2\mathrm{F}_6$ от производства алюминия, т $\mathrm{C}_2\mathrm{F}_6$;

 \mathcal{Z}_{CF_4} - угловой коэффициент для $\ {
m CF}_4$, (кг $\ {
m CF}_4$ /т Ал.)/ (минуты анодного эффекта/ванно-сутки);

 $F_{C2F6/CF4}$ - весовая доля C_2F_6/CF_4 , кг $C_2F_6/к$ г CF_4 ;

AEM - минуты анодного эффекта на ванно-сутки, (минуты анодного эффекта/ванно-сутки);

$$AEM = AEF * AED$$
, (16.4)

где:

AEF - средняя частота анодных эффектов за период, шт./ванно-сутки;

*АЕ*Д- средняя продолжительность анодных эффектов за период, минут/шт.

- 16.3.2. Потенциал глобального потепления (ПГП) для перфторметана (${\rm CF_4}$) и перфторэтана (${\rm C_2F_6}$) определяется в соответствии с перечнем парниковых газов, в отношении которых осуществляется государственный учет выбросов парниковых газов и ведение кадастра парниковых газов, утвержденного распоряжением Правительства Российской Федерации от 22.10.2021 N 2979-р (Собрание законодательства Российской Федерации, 2021, N 44, ст.7456).
- 16.3.3. Угловой коэффициент выбросов ${}^{\circ}\mathrm{CF_4}$ (${}^{\circ}\mathrm{CF_4}$) зависит от используемой технологии получения первичного алюминия и технологических параметров производства. Следует использовать значения угловых коэффициентов, приведенные в таблице 16.1 настоящего приложения. Организации могут самостоятельно определять значения углового коэффициента (${}^{\circ}\mathrm{CF_4}$) на основе выполненных инструментальных измерений. Значения угловых коэффициентов устанавливаются для отдельного предприятия и конкретной технологии производства первичного алюминия с актуализацией не менее 1 раза в пять лет или при существенных изменениях в технологии производства.
- 16.3.4. Значение весового отношения C_2F_6 к CF_4 ($F_{C2F6/CF4}$) принимается в соответствии с данными для различных технологий производства первичного алюминия, приведенными в таблице 16.1. Организации могут самостоятельно определять значения весового отношения C_2F_6 к CF_4 ($F_{C2F6/CF4}$) на основе выполненных инструментальных измерений. Значение весового отношения C_2F_6 к CF_4 устанавливается для отдельного предприятия и конкретной технологии производства первичного алюминия с актуализацией не менее 1 раза в пять лет или при существенных изменениях в технологии производства.
- 16.3.5. Средняя частота анодных эффектов (AEF) и средняя продолжительность анодных эффектов (AED) принимается по фактическим данным регистрации технологических параметров электролизных корпусов.
 - 16.4. Выбросы диоксида углерода от производства первичного алюминия:
- 16.4.1. Расчет прямых выбросов CO_2 -эквивалента при электролитическом получении алюминия на электролизерах Содерберга (16.5):

$$E_{CO_{2\,\text{NNE}}}^{\text{SMT}} = E_{CO_{2\,\text{NNE}}}^{\text{mpy}} + E_{CO_{2}}^{\text{conff}} \times M_{Al} \,, \quad \, (16.5)$$

 $E_{CO_{2\,{
m MB}}}^{
m SIT}$ - выброс ${
m CO}_{2\,{
m SKB}}$ от электролизного производства, т/год;

$$E_{CO_{2}}^{
m mpy}$$
 - выбросы ПФУ, т ${
m CO}_{2}$ жв (16.1);

 $E_{CO_2}^{
m confo}$ - удельный выброс диоксида углерода от электролизеров Содерберга, т ${
m CO_2}$ /т Ал.;

 ${
m M}_{\it Al}$ - выпуск алюминия (электролитического), т/год.

16.4.1.1. Расчет выбросов CO_2 от электролизеров Содерберга (16.6-16.16).

$$E_{CO_2}^{\text{comb}} = \left(P_{\text{am}} - M_{\text{am}}^{\text{H}} - M_{\text{am}}^{\text{sz}} - M_{\text{cm}}^{\text{c}} - M_{\text{numb}}^{\text{c}} - M_{\text{nema}}^{\text{c}}\right) * \frac{44}{12} + E_{CO_2}^{\text{mo}}, \quad (16.6)$$

где:

 $E_{CO_2}^{\rm confo}$ - удельный выброс диоксида углерода от электролизных корпусов, т/т Ал.;

 P_{am} - расход анодной массы, т/т Ал.;

 M^{H}_{am} - потери анодной массы с водородом, т/т Ал.;

 $M_{\text{am}}^{\text{SZ}}$ - потери анодной массы с серой и золой, т/т Ал.;

 $\mathbf{M}^{\mathtt{c}}_{\mathtt{c} \mathtt{m}}$ - потери углерода со смолистыми веществами, т/т Ал.;

 $M^{c}_{\text{пълль}}$ - потери углерода с пылью, т/т Ал.;

 $\mathbf{M}^{\mathtt{c}}_{\mathtt{пена}}$ - потери углерода с угольной пеной, т/т Ал.;

 $E_{CO2}^{ exttt{MO}}$ - удельный выброс диоксида углерода при мокрой очистке отходящих газов содовым раствором, т/т Ал.;

 $\frac{44}{12}$ - стехиометрический коэффициент пересчета углерода в $\, {\rm CO}_2 \, .$

Расчет потерь анодной массы в связи с содержанием в ней водорода (16.7):

$$\mathbf{M}_{am}^{H} = \mathbf{P}_{am} * \frac{H_{\pi}}{100},$$
 (16.7)

где:

 $M_{\text{ам}}^{\text{H}}$ - потери анодной массы с водородом, т/т Ал.;

 H_{Π} - содержание водорода в анодной массе, %.

Расчет потерь анодной массы в связи с содержанием в ней серы и золы (16.8):

$$\mathbf{M}_{am}^{sz} = \mathbf{P}_{am} * \frac{S_{am} + Z_{am}}{100},$$
 (16.8)

где:

 $M_{\text{am}}^{\text{sz}}$ - потери анодной массы с серой и золой, т/т Ал.;

 $S_{\rm am}$ - содержание серы в анодной массе, %;

 $Z_{\rm am}$ - содержание золы в анодной массе, %.

Расчет потерь углерода со смолистыми веществами (16.9-16.11):

при наличии мокрой ступени газоочистки:

$$\mathbf{M}_{\text{cm}}^{\text{c}} = \frac{E_{\text{cm}}^{\Phi}}{1000} * \frac{W_{\text{cm}}^{\text{c}}}{100} + \frac{P_{\text{cm}}^{\text{r}}}{1000} * \frac{W_{\text{cm}}^{\text{c}}}{100}, \quad (16.9)$$

где:

 $\mathbf{M}^{\mathtt{c}}_{\mathtt{c}\mathtt{m}}$ - потери углерода со смолистыми веществами, т/т Ал.;

 $E_{
m cm}^{f \Phi}$ - выброс смолистых веществ через фонарь, кг/т Ал.;

 $\mathrm{P}_{\mathtt{cm}}^{\mathtt{r}}$ - удельное поступление смолистых веществ в ГОУ, кг/т Ал.;

 $W^{\mathrm{c}}_{\mathrm{cm}}$ - содержание углерода в смолистых веществах, %.

При этом:

$$P_{cm}^{\Phi} = \left(1 - \eta_{K}\right) * P_{cm}^{r} + P_{cm}^{mu}, \quad (16.10)$$

где:

 η_κ - эффективность укрытия электролизера, доли ед.;

 $P_{\text{см}}^{\text{mu}}$ - количество смолистых веществ, выделяющихся в атмосферу при перестановке штырей для электролизеров с верхним токоподводом, кг/т Ал.;

при наличии сухой газоочистки:

$$\mathbf{M}_{cm}^{c} = \frac{\mathbf{P}_{cm}^{\Phi}}{1000} * \frac{W_{cm}^{c}}{100}$$
 (16.11)

Расчет потерь углерода с пылью:

при наличии мокрой ступени газоочистки:

$$\mathbf{M}_{\text{пыль}}^{\text{C}} = \frac{E_{\text{пыль}}^{\Phi}}{1000} * \frac{W_{\text{пыль}}^{\text{C}}}{100} + \frac{P_{\text{пыль}}^{\text{F}}}{1000} * \frac{W_{\text{пыль}}^{\text{C}}}{100} , \quad (16.12)$$

где:

 $M^{c}_{\text{пълль}}$ - потери углерода с пылью, т/т Ал.;

 $E_{ ext{ iny IIIIII}}^{oldsymbol{\Phi}}$ - удельный выброс пыли через фонарь, кг/тАл.;

 $\mathbb{P}^{\mathbf{r}}_{\text{пъшъ}}$ - удельное поступление пыли в ГОУ, кг/тАл.;

 $W_{\mathrm{тылть}}^{\mathrm{C}}$ - содержание углерода в пыли, %.

При этом:

$$P_{\text{minim}}^{\Phi} = \left(1 - \eta_{\text{K}}\right) * P_{\text{minim}}^{\text{r}}, \quad (16.13)$$

 η_κ - эффективность укрытия электролизера, доли ед.;

при наличии сухой газоочистки:

$$M_{\text{пыль}}^{c} = \frac{P_{\text{пыль}}^{\Phi}}{1000} * \frac{W_{\text{пыль}}^{C}}{100}$$
. (16.14)

Расчет потерь углерода с угольной пеной:

$$M_{\text{пена}}^{\text{с}} = \frac{P_{\text{пена}}^{\text{вых}}}{1000} * \frac{W_{\text{пена}}^{\text{C}}}{100},$$
 (16.15)

где:

 $\mathbf{M}_{\text{пена}}^{\text{c}}$ - потери углерода с угольной пеной, т/т Ал.;

 $P_{\text{пена}}^{\text{вых}}$ - выход угольной пены, кг/тАл.;

 $W_{\text{пена}}^{\mathbb{C}}$ - содержание углерода в пене, %.

Расчет выброса диоксида углерода при мокрой очистке отходящих газов содовым раствором:

$$E_{CO_2}^{\text{MO}} = \frac{P_{SO_2}}{1000} * \eta * 44 / 64$$
, (16.16)

где:

 $E_{CO_2}^{\text{MO}}$ - удельный выброс диоксида углерода при мокрой очистке отходящих газов содовым раствором, т/т Ал.;

- P_{SO_2} удельное поступление диоксида серы в ГОУ, кг/тАл.;
- 1 эффективность улавливания диоксида серы в ГОУ, доли ед.
- 16.4.1.2. Производство электролитического алюминия ($\mathbb{M}_{A\!I}$), включающего наработку первичного алюминия в электролизерах за отчетный период, определяется организациями по корпусам электролиза в соответствии с утвержденными на предприятиях технологическими регламентами.
- 16.4.1.3. Удельный расход анодной массы ($P_{\text{ам}}$) за отчетный период принимается по фактическим данным организаций, определенным по материальным балансам сырья.
- 16.4.1.4. Содержание водорода в анодной массе (H_{Π} формула 16.7) определяется по данным, полученным в результате установленных в организации процедур, при отсутствии данных принимается 1,4%.
- 16.4.1.5. Содержание серы и золы в анодной массе ($\mathcal{S}_{\text{ам}}$ и $\mathcal{Z}_{\text{ам}}$ формула 16.8) принимается по данным, полученным в результате установленных в организации процедур.
- 16.4.1.6. При расчете по формуле 16.9 удельное поступление смолистых веществ в газоочистные установки ($\mathbb{P}^{\mathbf{r}}_{\mathtt{cm}}$) принимается по данным учета выбросов, содержание углерода в смолистых веществах ($W^{\mathtt{c}}_{\mathtt{cm}}$) принимается по лабораторного анализа*, при отсутствии экспериментальных данных принимается равным 95%.

16.4.1.7. Количество смолистых веществ ($\mathbb{P}^{\text{тш}}_{\text{см}}$ - формула 16.10), выделяющихся в атмосферу при перестановке штырей для электролизеров с верхним токоподводом определяется формулой:

$$P_{\text{cm}}^{\text{mu}} = 0.785 \cdot d_{\text{m}}^2 \cdot h \cdot q \cdot c \cdot \rho_{\text{max}} \cdot (1 - k) \cdot n_{\text{m}},$$
 (16.10.1)

где:

- ${\rm d}_{\pi}$ диаметр лунки (принят равным среднему диаметру участка штыря, запечённого в теле анода), дм;
 - h средняя по электролизеру высота лунки (высота штыря в запечной части анода), дм;
 - q степень заполнения лунки, доли ед.;
 - с содержание пека в анодной массе, загружаемой перед перестановкой штырей, доли ед.;
 - $\rho_{\text{жам}}$ плотность жидкой анодной массы, кг/дм³;
 - k выход кокса при быстром коксовании пека, доли ед.;
 - п ,,,, количество переставляемых штырей в расчете на 1 т Ал.
- 16.4.1.8. Удельное поступление пыли в газоочистные установки принимается по данным учета выбросов ($\mathbb{P}^{\mathfrak{r}}_{\text{пълть}}$), содержание углерода в пыли ($W^{\mathbb{C}}_{\text{пълть}}$) определяются по данным, полученным в результате установленных в организации процедур (формула 16.12).
 - 16.4.1.9. При расчете потерь углерода с угольной пеной (формула 16.15) содержание углерода

^{*} Текст документа соответствует оригиналу. - Примечание изготовителя базы данных.

в пене ($W_{\mathtt{пена}}^{\mathbb{C}}$) принимается по данным учета выбросов.

- 16.4.1.10. Удельное поступление диоксида серы (${}^{\mathrm{P}}_{SO_2}$ формула 16.16) в газоочистные установки принимается по данным учета выбросов.
- 16.4.2. Расчет прямых выбросов ^{СО}2экв при электролитическом получении алюминия на электролизерах с обожженными анодами (ОА) производится по формулам (16.17-16.21):

$$E_{CO_{2\, \mathrm{ME}}}^{\mathrm{SIT}} = E_{CO_{2\, \mathrm{ME}}}^{\mathrm{mpy}} + E_{CO_{2}}^{\mathrm{oa}} \times \mathrm{M}_{Al}$$
, (16.17)

где:

 $E_{CO_{2\,{
m max}}}^{
m SR}$ - выброс диоксида углерода от электролизного производства, т ${
m CO}_{2\,{
m skB}}$ /год;

 $E_{CO_2}^{ ext{oa}}$ - удельный выброс CO_2 от электролизеров с обожженными анодами, т CO_2 /т Ал.;

 $E_{CO_{2\,{
m ME}}}^{
m mpy}$ - выбросы ПФУ, т ${
m CO}_{2\,{
m ME}}$ (16.1).

$$E_{CO_2}^{\text{oa}} = \left(P_a * \frac{100 - S_a - Z_a}{100} - M_{\text{пыль}}^c - M_{\text{пена}}^c\right) * \frac{44}{12}, \quad (16.18)$$

где:

 $P_{\rm a}$ - расход обожженных анодов нетто, т/т Ал.;

 $S_{
m a}$ - содержание серы в обожженном аноде, %;

 Z_{a} - содержание золы в обожженном аноде, %;

 $\mathbf{M}^{\mathtt{c}}_{\mathtt{пыль}}$ - потери углерода с пылью, т/т Ал.;

 $\mathbf{M}^{\text{c}}_{\text{пена}}$ - потери диоксида углерода с угольной пеной, т/т Ал.

Расчет потерь углерода с пылью:

$$\mathbf{M}_{\text{TISSUE}}^{c} = \frac{P_{\text{TISSUE}}^{\Phi}}{1000} * \frac{\mathbf{\Pi}_{\text{TISSUE}}^{C}}{100}$$
. (16.19)

Расчет потерь углерода с угольной пеной:

$$\mathbf{M}_{\text{пена}}^{\text{c}} = \frac{P_{\text{пена}}^{\text{вых}}}{1000} * \frac{\mathbf{\Pi}_{\text{пена}}^{\text{C}}}{100}$$
. (16.20)

- 16.4.2.1. Удельный расход обожженных анодов ($P_{\rm a}$) за отчетный период принимается по фактическим данным организаций, определенным по материальным балансам сырья.
- 16.4.2.2. Содержание серы и золы в обожженных анодах (Sa и Za) принимается по данным, полученным в результате установленных в организации процедур.
- 16.4.2.3. Выбросы от сжигания топлива при производстве анодной массы и предварительном обжиге анодов определяются по формулам (1.1) пункта 1 "Стационарное сжигание топлива"

настоящего приложения на основе данных о фактическом расходе топлива на прокалку и сушку кокса и обжиг "зеленых" анодов по данным измерений, низшей теплоте сгорания по фактическим или справочным данным и с учетом коэффициента окисления топлива принятым равным 1,0.

16.4.3. Выбросы \mathbb{CO}_2 от угара при прокалке кокса ($E^{\text{KII}}_{\mathbb{CO}_2}$) рассчитываются по формуле (16.21), если прокалка кокса, осуществляется на алюминиевом заводе. В случае использования в производстве анодной массы прокаленного кокса, а также при производстве предварительно обожженных анодов выбросы от прокалки кокса не учитываются.

$$E_{CO_2}^{K\Pi} = \frac{P_K \times Y_K}{100} \times \frac{W_K^c}{100} \times \frac{44}{12},$$
 (16.21)

где:

 \mathbb{P}_{κ} - расход сырого кокса, т/год;

У - угар кокса, %;

 $W_{\kappa}^{\tt C}$ - содержание углерода в коксе, %.

- 16.4.3.1. Расход сырого кокса ($\mathbb{P}_{\mathbb{K}}$) определяется организациями по фактическим данным организаций, за отчетный период. Угар кокса ($\mathbb{V}_{\mathbb{K}}$) принимается по фактическим данным организаций. Содержание углерода в сыром коксе ($\mathbb{W}^{\mathfrak{c}}_{\mathbb{K}}$) принимается по данным, полученным в результате установленных в организации процедур, при отсутствии данных принимается равным 96%.

$$M_{CO_2}^{obs} = GA \times 0.066 * \frac{44}{12},$$
 (16.22)

где:

GA - объем производства зеленых анодов, т/год;

0,066 - коэффициент, учитывающий потери летучих, смолистых, пересыпки при обжиге зеленых анодов, д.е.

16.4.3.3. Объем производства зеленых анодов (*GA*) за отчетный период принимается по фактическим данным организаций.

Таблица 16.1 Угловые коэффициенты, весовое отношение C_2F_6 / CF_4 и содержание окисляемого углерода в анодной массе (предварительно обожженных анодах) для расчета выбросов парниковых газов от производства алюминия по различным технологиям

	Угловой коэффициент для $^{ ext{CF}_4}$ ($^{ ext{S}_{ ext{CF}4}}$), (кг $^{ ext{CF}_4}$ /т алюминия)/(минуты анодного эффекта/ванно-сутки)	Весовое отношение $\ ^{\text{C}}_{2} ext{F}_{6}$ / $\ ^{\text{C}} ext{CF}_{4}$ ($\ ^{\text{C}}_{\text{C2F6/CF4}}$), кг $\ ^{\text{C}}_{2} ext{F}_{6}$ /кг $\ ^{\text{CF}}_{4}$
CWPB	0,143	0,121
VSS	0,092	0,053

HSS	0,099	0,085

CWPB - электролизеры с предварительно обожженными анодами;

VSS - электролизеры Содерберга с верхним токоподводом;

HSS - электролизеры Содерберга с боковым токоподводом.

- 17. Прочие промышленные процессы
- 17.1. Данная категория источников выбросов парниковых газов включает выбросы \mathbb{CO}_2 , возникающие в результате неэнергетического использования топлива, то есть использования топлива в технологических процессах, не связанных с выработкой энергетических ресурсов, использования восстановителей и использовании карбонатных материалов в технологических процессах. Производство кальцинированной соды, водорода, свинца, цинка, карбида кальция, карбида кремния, целлюлозно-бумажное производство, использование ацетилена для сварки, и другие виды хозяйственной деятельности.
- 17.2. В данную категорию источников парниковых газов не включаются выбросы ${\rm CH_4}$ и ${\rm N_2O}$, а также выбросы ${\rm CO_2}$ от стационарного сжигания топлива и других категорий источников, выделенных в настоящей Методике.
- 17.3. Количественное определение выбросов \mathbb{CO}_2 от неэнергетического использования топлива выполняется по формуле (17.1), использования восстановителей по формуле (17.2), использования карбонатных материалов по формуле (17.3).
 - 17.4. Выбросы от неэнергетического использования топлива:
 - 17.4.1. Расчет выбросов выполняется по формуле:

$$E_{CO2,y} = \left[\sum_{k=1}^{m} \left(FC_{k,i,y} \times W_{C,k,y} \right) - \sum_{i=1}^{n} \left(PP_{i,y} \times W_{C,i,y} \right) \right] \times 3,664, \quad (17.1)$$

где:

 $\mathbb{E}_{\mathbb{CO}2,\mathbb{V}}$ - выбросы \mathbb{CO}_2 от неэнергетического использования топлива за период у, т \mathbb{CO}_2 ;

 $\mathrm{FC}_{k,i,y}$ - расход топлива k на производство продукта i за период y, т, тыс.м 3 , т y.т. или ТДж;

 $\mathbb{W}_{\mathbb{C}.k.\, extbf{v}}$ - содержание углерода в топливе k за период y, т C/ед.;

 ${\mathbb P}_{i,\mathbb V}^-$ производство продукта і за период у, т, тыс.м 3 , т у.т. или ТДж;

 $\mathbb{W}_{\mathbb{C},i,y}$ - содержание углерода в продукте і за период у, т С/ед.;

і - вид производимой продукции;

k - вид топлива, используемого для производства продукции;

n - количество видов продукции;

m - количество видов топлива, используемого для производства продукции.

- 17.4.2. Производство продукции (${}^{PP}_{i,y}$) и расход топлива на производство (${}^{FC}_{k,i,y}$) принимается по фактическим данным организации за отчетный период. В расчетах необходимо учитывать дополнительные виды углеродсодержащего сырья и материалов, если они используются в процессе производства, а также образование вторичных углеродсодержащих продуктов и отходов производства, если они выводятся (не возвращаются) из технологического процесса.
- 17.4.3. Содержание углерода в топливе ($\mathbb{W}_{\mathbb{C},k,y}$) и ($\mathbb{W}_{\mathbb{C},i,y}$) получаемой продукции принимается по фактическим данным организации за отчетный период, рассчитывается в соответствии с пунктом 1 "Стационарное сжигание топлива" настоящего приложения или при отсутствии необходимых данных принимается по таблице 1.1 настоящего приложения. При отсутствии необходимых данных о содержании углерода в настоящей Методике допускается использование справочных данных из других источников в соответствии с пунктом 9 настоящей Методики.
 - 17.5. Выбросы от использования восстановителей
 - 17.5.1. Расчет выбросов выполняется по формуле:

$$E_{CO2,y} = \sum_{i=1}^{n} (RMC_{i,y} \times W_{C,i,y}) \times 3,664$$
, (17.2)

 $\mathbb{E}_{\mathrm{CO2,v}}$ - выбросы \mathbb{CO}_2 от использования восстановителей за период у, т \mathbb{CO}_2 ;

 $\mathrm{RMC}_{i,y}$ - расход і-восстановителя за период у, т, тыс.м 3 , т у.т. или ТДж;

 $\mathbb{W}_{\mathbb{C},i,\mathbb{V}}$ - содержание углерода в і-восстановителе за период у, т С/ед.;

- і вид восстановителя;
- n количество видов используемых восстановителей.
- 17.5.2. Расход восстановителей на производство (${
 m RMC}_{i,y}$) принимается по фактическим данным организации за отчетный период.
- 17.5.3. Содержание углерода в восстановителях ($\mathbb{W}_{\mathbb{C},i,y}$) принимается по фактическим данным организации за отчетный период, рассчитывается в соответствии с пунктом 1 "Стационарное сжигание топлива" настоящего приложения или при отсутствии необходимых данных принимается по таблице 1.1 настоящего приложения.
 - 17.6. Выбросы ${{\Bbb C} {\Bbb O}}_2$ от использования карбонатов:
 - 17.6.1. Расчет выбросов выполняется по формуле:

$$E_{CO2,y} = \sum_{j=1}^{n} (M_{j,y} \times EF_{CO2,j}),$$
 (17.3)

где:

 ${\rm E_{{
m CO2,v}}}$ - выбросы ${
m CO_2}$ от использования карбонатных материалов за период у, т ${
m CO_2}$;

 $M_{j,y}$ - масса карбоната j, израсходованного за период y, т;

 $\mathrm{EF}_{\mathrm{CO2,j}}$ - коэффициент выбросов для карбоната j, т CO_2 /т;

- ј вид используемых карбонатов (например, $CaCO_3$, Na_2CO_3);
- n количество видов используемых карбонатов.
- 17.6.2. Масса карбоната j, израсходованного ($M_{j,y}$) принимается по фактическим данным организации за вычетом содержания влаги и примесей (при наличии соответствующих данных).
- 17.6.3. Значение коэффициента выбросов для карбоната ј ($^{\hbox{\it EF}}_{\hbox{\it CO2},j}$) принимается по таблицам 6.1 и 8.1 или при отсутствии необходимых данных рассчитывается как стехиометрическое отношение молекулярной массы $^{\hbox{\it CO}}_2$ к молекулярной массе карбоната.
 - 18. Транспорт
- 18.1. Данная категория стационарных и передвижных источников выбросов парниковых газов включает выбросы \mathbb{CO}_2 в атмосферный воздух, возникающие в результате сжигания всех видов газообразного, жидкого и твердого топлива в двигателях транспортных средств автомобильного (в том числе автомобилями индивидуальных владельцев), железнодорожного, морского, внутреннего водного и воздушного видов транспорта при осуществлении пассажирских и грузовых перевозок, а также вспомогательными установками для выработки тепловой и (или) электрической энергии для транспортных средств и собственных нужд организаций транспорта, а также для осуществления иных технологических операций.

Организации, использующие технику на основе договора аренды или лизинга, должны учитывать выбросы от данного вида транспорта совместно с транспортом, принадлежащим организации на основе права собственности. Организации, предоставляющие технику на основе договора аренды или лизинга другим сторонним компаниям, должны предоставлять данные о выбросах парниковых газов в качестве справочной информации, в независимости от форм собственного управления, владения и контроля транспортными средствами.

- 18.2. Выбросы CO_2 от стационарного сжигания топлива в организациях, осуществляющих перевозки автомобильным, железнодорожным, морским, внутренним водным и воздушным транспортами выполняются в соответствии с пунктом 4 "Стационарное сжигание топлива" настоящего приложения (18.3).
- 18.3. В целях определения выбросов \mathbb{CO}_2 , возникающих в результате сжигания моторного топлива в двигателях транспортных средств, организации определяют расход моторного топлива, используемого для осуществления перевозок автомобильным, железнодорожным, авиационным, морским и речным транспортом за отчетный период по видам топлива.

Определение массы (объема) потребленного топлива должно выполняться организациями в соответствии с нормативными правовыми актами Российской Федерации.

Расход топлива определяется по данным поставщика топлива или по данным измерений, выполненных непосредственно на транспортном средстве.

В расчет израсходованного топлива должно быть включено потребление топлива вспомогательными силовыми установками транспортных средств, не предназначенными для приведения транспортного средства в движение.

Использование в качестве топлива древесины, древесных отходов, древесного угля или других видов биомассы исключаются из расчетов.

Плотность моторного топлива определяется организациями для каждой партии топлива по результатам лабораторных испытаний, выполненных организацией, осуществляющей перевозки грузов или пассажиров, или поставщиком топлива в соответствии с нормативными правовыми актами Российской Федерации, а при отсутствии фактических данных принимается в соответствии со стандартными значениями, приведенными в таблице 18.1 настоящего приложения.

Организации воздушного, морского и внутреннего водного транспорта должны разделять потребление топлива транспортными средствами данных видов транспорта за отчетный период на международные и внутренние рейсы на основании начальных, промежуточных и конечных пунктов полета воздушных судов или морских и речных судов для каждого рейса, а не по территориальной принадлежности авиационной, морской или речной компании.

18.4. Количественное определение выбросов CO_2 от сжигания топлива в двигателях автотранспортных средств, в том числе индивидуальных владельцев.

Расчет выполняется по отдельным типам автотранспортных средств (грузовой, пассажирский, легковой) и видам потребленного топлива по формуле (18.1):

$$E_{CO2,y} = \sum_{j,b,y} \left(FC_{j,b,y} \times EF_{j,b} \right), \quad (18.1)$$

где:

 $E_{CO2,y}$ - выбросы ${\rm CO}_2$ от сжигания топлива в двигателях автотранспортных средств за период у, т CO2;

 $\mathit{FC}_{j,b,y}$ - расход топлива вида j транспортным средством типа $\,b\,$ за период $\,\mathcal{Y}$, т;

 $EF_{j,b}$ - коэффициент выбросов CO2 при использовании в транспортном средстве типа b вида топлива j , т CO_2 /т (принимается по таблице 18.1 настоящего приложения);

j - вид топлива (бензин, дизельное топливо, сжиженные нефтяной и природные газы);

b - тип транспортного средства (грузовой, пассажирский, легковой).

Если учет потребления топлива в организации осуществляется в объемных единицах, то израсходованное топливо за отчетный период (${}^{FC}_{j,b,y}$) определяется с учетом расхода и плотности топлива по формуле (18.2):

$$FC_{j,b,y} = \sum (FC'_{j,b,y} \times \rho_j) \times 10^{-3}$$
, (18.2)

где:

 $FC_{j,b,\mathcal{Y}}^{'}$ - расход топлива вида j транспортным средством типа b за период \mathcal{Y} , выраженный в объемной величине, π ;

 ρ_i - плотность топлива вида j , кг/л.

Плотность топлива принимается по фактическим значениям организации, осуществляющей перевозки автотранспортными средствами или по справочным данным, приведенным в таблице 18.1 настоящего приложения.

18.5. Количественное определение выбросов ${\rm CO}_2$ от сжигания моторного топлива железнодорожного подвижного состава.

Расчет выполняется по видам внутрироссийских перевозок железнодорожным транспортом.

Выбросы ${\rm CO}_2$ при сжигании моторного топлива и других топливно-энергетических ресурсов от железнодорожного транспорта, используемого в организациях, не занимающихся магистральными железнодорожными перевозками не учитываются.

Определение выбросов парниковых газов от передвижных источников должно учитываться по категориям транспорта (тепловозы, паровозы, газотурбовозы, вагоны пассажирские локомотивной тяги, рельсовые автобусы, автомотрисы, специальный самоходный подвижной состав) с указанием видов движения (пассажирское, грузовое, маневровое, хозяйственное, пригородное).

Для передвижных источников принадлежность произведенного ими выброса ${\rm CO}_2$ определяется:

- для тягового подвижного состава по депо приписки локомотивных бригад, эксплуатирующих этот подвижной состав;
- для самоходного специализированного подвижного состава по структурному подразделению приписки машинистов (операторов), эксплуатирующих этот подвижной состав;
 - для прочих технических средств по их балансовой принадлежности.

Расчет производится по формуле (18.3):

$$E_{CO2,y} = \sum_{j,b,y} \left(FC_{j,b,y} \times EF_{j,b} \right), \quad \ (18.3)$$

где:

 $E_{CO2,y}$ - выбросы CO2 от сжигания моторного топлива на железнодорожном транспорте за период ${\cal Y}$, m CO2;

 $FC_{j,b,y}$ - расход топлива вида $\ j$ транспортным средством типа $\ b$ за период $\ \mathcal Y$, т (принимается по таблице 18.1 настоящего приложения);

 $EF_{j,b}$ - коэффициент выбросов CO2 при использовании на транспортном средстве типа b вида топлива $\mathcal Y$, т CO2/т (принимается по таблице 18.1 настоящего приложения);

j - вид топлива (дизельное топливо, сжиженный природный газ, уголь, мазут);

- *§* тип транспортного средства (тепловозы, паровозы, газотурбовозы, вагоны пассажирские локомотивной тяги, рельсовые автобусы, автомотрисы, специальный самоходный подвижной состав).
- 18.6. Количественное определение выбросов CO2 от сжигания моторного топлива и других видов топливно-энергетических ресурсов на морском и внутреннем водном транспорте.

Расчет выполняется по видам маршрутов (внутренние или международные) в зависимости от вида топлива, типа двигателя судна и режима его работы по формуле (18.4):

$$E_{CO2,y} = \sum_{DOM/INT,j,b,y} \left(FC_{DOM/INT,j,b,y} \times CF_{TCE,j} \times CF_{NCV,j} \times EF_{j,b} \right) \times 10^{-3} , \quad (18.4)$$

где:

 $E_{CO2,y}$ - выбросы CO2 от сжигания моторного топлива и других видов топливно-энергетических ресурсов на морском и речном транспорте, т CO2;

 $FC_{DOM/INT,j,b,y}$ - расход топлива вида j (мазут, дизельное топливо) на судне типа b при внутренних (DOM) или международных (INT) перевозках морским или внутренним водным транспортом за период $\mathcal Y$, $\mathsf T$;

 $CF_{TCE,j}$ - коэффициент пересчета в тонны условного топлива в угольном эквиваленте по виду топлива j , m.y.m./m;

 $CF_{NCV,j}$ - коэффициент пересчета в теплотворную способность топлива по виду топлива a , ТДж/т.у.т;

 $EF_{j,b}$ - коэффициент выбросов CO2 при использовании на судне типа b топлива вида a , кг/ТДж (принимается по таблице 18.1 настоящего приложения);

j - вид топлива (дизельное топливо, сжиженный нефтяной газ);

b - тип судна соответственно при внутренних (*DOM*) или международных (*INT*) перевозках морским или внутренним водным транспортом.

Коэффициент пересчета топлива в тонны условного топлива в угольном эквиваленте ($CF_{TCE,j}$) и коэффициент пересчета в теплотворную способность топлива ($CF_{NCV,j}$) определяться* на основании данных о виде топлива и типе двигателей конкретных судов.

В случае отсутствия данных о коэффициенте пересчета топлива в тонны условного топлива в угольном эквиваленте (${}^{CF}_{TCE,j}$), его значение применяется для мазута - 1,43 т.у.т./т, для дизельного топлива - 1,45 т.у.т./т.

В случае отсутствия данных о коэффициенте пересчета в теплотворную способность топлива $({}^{CF}_{NCV,i})$, его значение применяется равным 0,0293 ТДж/т.у.т.

При оценке выбросов ${\rm CO}_2$ судами не учитываются конструктивные коэффициенты энергетической эффективности новых судов морского и внутреннего водного транспорта, а также среднегодовой эксплуатационный коэффициент энергоэффективности существующих судов морского и внутреннего водного транспорта и не рассматриваются использующие эти коэффициенты методики оценки выбросов парниковых газов.

18.7. Количественное определение выбросов CO2 от сжигания моторного топлива и других видов топливно-энергетических ресурсов на воздушном транспорте.

Расчет выполняется в соответствии с требованиями, приведенными в томе IV Приложения 16 к Конвенции о международной гражданской авиации (ИКАО).

При оценке учитывают выбросы CO2, возникающие в результате потребления авиационного топлива на всех типах воздушных судов, используемых организациями для осуществления внутренних (DOM) или международных (INT) полетов, включая рейсы без коммерческой загрузки, регулярные и нерегулярные перевозки пассажиров, грузов, багажа и почты, а также наземного транспорта.

^{*} Текст документа соответствует оригиналу. - Примечание изготовителя базы данных.

При расчете не учитываются выбросы СО2 от:

- полетов военной авиации и авиации специального назначения, учебно-тренировочных полетов, литерные рейсы и другие виды перевозок за исключением коммерческих воздушных перевозок;
- воздушных судов отличных от гражданских воздушных судов, выполняющих рейсы в соответствии с действующим сертификатом эксплуатанта;
- использования смазочных материалов и специальных жидкостей для эксплуатации авиационной техники.

Выбросы CO2 от сжигания топлива наземным транспортом в аэропортах рассчитывается в соответствии с методикой определения выбросов CO_2 от сжигания топлива в двигателях автотранспортных средств, предусмотренной пунктом 18.4 настоящего приложения, по формуле (18.2).

Эксплуатант воздушных судов, использующий один из методов мониторинга потребления топлива, предусмотренных в добавлении 2 к тому IV Приложения 16 к Конвенции о международной гражданской авиации (ИКАО), рассчитывает выбросы СО2 от сжигания топлива в двигателях воздушных судов от внутренних и международных полетов по следующей формуле (18.5):

$$E_{CO2,y} = \sum \left(FC_{DOM/BMT,j,y} \times EF_j \right), \quad (18.5)$$

где:

 $E_{{\rm CO2},y}$ - выбросы CO2 от сжигания топлива в двигателях воздушных судов от внутренних (DOM) и международных (INT) полетов за период ${\cal Y}$, т CO2;

$$\mathit{FC}_{DOM/\mathit{INT},j,\mathcal{Y}}$$
 - расход топлива вида $\,j\,$ за период $\,\mathcal{Y}$, т;

$$\emph{EF}_i$$
 - коэффициент преобразования топлива j , т CO2/т;

j - вид топлива (Jet-A/Jet-A1, AvGas, Jet-B).

Значение коэффициента преобразования топлива ($\it EFj$) применяется для топлива Jet-A/Jet-A1 - 3,16 т CO2/т, для топлива AvGas или Jet-B - 1,10 т CO2/т.

В случае, если количество топлива определено в единицах объема, то масса потребленного топлива ($^{FC}_{DOM/NT,j,y}$) определяется с учетом плотности топлива по формуле (18.6):

$$FC_{DOM/INT,j,y} = \sum_{j,y} (FC'_{DOM/INT,j,y} \times \rho_j) \times 10^{-3}$$
, (18.6)

где:

 $FC_{DOM/INT,j,\mathcal{Y}}^{'}$ - расход топлива вида j от внутренних (DOM) и международных (INT) полетов за период \mathcal{Y} , выраженный в объемной величине, π ;

 ρ_i - плотность топлива вида j , кг/л;

 \dot{J} - вид топлива.

Плотность топлива принимается по фактическим значениям организации, выполняющие полеты воздушными суднами, или по справочным данным, приведенным в таблице 18.1 настоящего приложения.

При отсутствии данных о потреблении авиационного топлива в разрезе внутренних (*DOM*) и международных (*INT*) полетов эксплуатант рассчитывает потребление топлива на основе средних значений часового расхода топлива воздушных судов и данных о налете самолето-часов по внутренним и международным этапам полетов по формуле (18.7):

$$FC_{DOM/INT,j,y} = \sum_{j,x,y} \left(FT_{DOM/INT,j,x,y} \times FR_{j,x,y} \right), \quad (18.7)$$

где:

 $FC_{DOM/INT,j,y}$ - потребление топлива вида ј при осуществлении эксплуатантом внутренних (DOM) или международных (INT) полетов за период у, т;

 $FT_{DOM/INT,j,x,y}$ - налет, выполненный с потреблением топлива вида j за период у на отдельных типах воздушных судов x при осуществлении эксплуатантом внутренних (DOM) или международных (INT) полетов, самолето-часы;

 $FR_{j,x,y}$ - средний часовой расход топлива вида ј по отдельным типам воздушных судов х в период у, т/ч;

j - вид топлива;

x - тип воздушного судна.

Налет по отдельным типам пассажирских и грузовых воздушных судов для выполнения внутренних (DOM) или международных (INT) полетов определяется эксплуатантом воздушных судов на основании фактических данных о выполненных полетах воздушных судов.

Средние значения расхода топлива рассчитываются каждым конкретным эксплуатантом на ежегодной основе, исходя из фактических данных о суммарном количестве израсходованного топлива за отчетный период для каждого эксплуатируемого им типа воздушного судна. Средние значения расхода топлива для каждого типа воздушного судна представляются в отчете эксплуатанта о выбросах.

Таблица 18.1 - Коэффициенты выбросов CO_2 при сжигании топлива, а также плотность разных топлив

Вид топлива	Коэффиці	иент выбро	Плотность (Р),	
	т СО2/т (тыс.м ³)	Кг/ТДж	Кг/т.у.т.	кг/л
Бензин А-76 (АИ-80)	3,026	69300	2031	0,715
Бензин АИ-92	3,026	69300	2031	0,735
Бензин АИ-93	3,026	69300	2031	0,745
Бензин АИ-95	3,026	69300	2031	0,750

Бензин АИ-98	3,026	69300	2031	0,765
Дизельное топливо летнее	3,149	74100	2172	0,860
Дизельное топливо зимнее	3,149	74100	2172	0,840
Дизельное топливо арктическое	3,149	74100	2172	0,830
Сжиженный нефтяной газ (СНГ) (пропан)	2,903	63100	1849	0,528 (при t=0°C)
Сжиженный нефтяной газ СНГ (изобутан)	2,903	63100	1849	0,582 (при t=0°C)
Сжиженный нефтяной газ СНГ (н-бутан)	2,903	63100	1849	0,601 (при t=0°C)
Компримированный природный газ (КПГ)	1,840	54400	1594	0,668 (при t=0°C)
Сжиженный природный газ (СПГ)	2,710	54400	1594	0,424 (при t=0°C)
Авиационный керосин	3,16	71900	2100	0,8
Авиационный бензин	3,10	69300	2050	0,8
Топливо для реактивных двигателей	3,10	71900	2110	0,8
Смазочные материалы	2,95	-	-	-
Топочный мазут	-	77400	-	-
Твердые топлива (уголь и г	іродукты его п	ереработк	и) (рядовой) (т)
Донецкий	2,32	-	-	-
Кузнецкий	2,33	-	-	-
Нерюнгринский	2,72	-	-	-
Черемховский	2,07	-	-	-
Канско-Ачинский	1,48	-	-	-
Казахский (Каражаринский)	1,38	-	-	-
Азейский	1,33	-	-	-
Читинский	1,40	-	-	-
	Торф (т)			
Торф топливный	1,06	-	-	-
Брикеты и полубрикеты торфяные	1,87	-	-	-
	Отходы (т)			
Отходы бытовые (небиологическая фракция)	0,92	-	-	-
Нефтяные отходы	2,91	-	-	-
Прочие горючие отходы производства (т у.т.)	4,19	-	-	-
•		•	•	•

19. Дорожное хозяйство

19.1. Данная категория стационарных и передвижных источников выбросов парниковых газов включает выбросы CO2, возникающие в результате сжигания топлива, других топливно-энергетических ресурсов при осуществлении строительства (реконструкции), содержания, ремонта, капитального ремонта федеральных, региональных, местных автомобильных дорог разных категорий.

При расчете учитываются выбросы CO2 от транспортных средств, строительно-дорожной техники, а также от вспомогательных установок для выработки тепловой и (или) электрической энергии для транспортных средств, собственных нужд дорожных организаций, для осуществления иных технологических операций строительства (реконструкции), содержания, ремонта, капитального ремонта автомобильных дорог.

19.2. Расчет выбросов СО2 от дорожного хозяйства производится по формуле (19.1):

$$E_{CO2,y} = \sum_{j,b,k,y} \left(FC_{j,b,k,y} \times EF_{j,b} \right), \quad (19.1)$$

где:

 $E_{CO2,y}$ - выбросы CO2 в результате сжигания всех видов топлива при осуществлении строительства (реконструкции), содержания, ремонта, капитального ремонта автомобильных дорог за период у, т CO2;

 $FC_{j,b,k,y}$ - расход энергоресурса вида ј на этапе жизненного цикла b автомобильной дороги категории k за период y, т;

- $EF_{a,b}$ коэффициент выбросов CO2 при использовании на этапе жизненного цикла в автомобильной дороги категории k топлива j, т CO2/т (принимается по таблице 18.1 настоящего приложения);
- j вид энергоресурса (бензин, дизельное топливо, сжиженный нефтяной газ, компримированный природный газ и другие);
- b этап жизненного цикла автомобильной дороги за период у (строительство содержание, ремонт, капитальный ремонт);
- k категория автомобильной дороги в зависимости от вида автомобильной дороги (федеральная, региональная и межмуниципальная, местная).
- 19.3. Определение объема потребления моторного топлива, других топливно-энергетических ресурсов должно выполняться организациями в соответствии с нормативными правовыми актами Российской Федерации.

Организации определяют расход моторного топлива, потребление других видов топливно-энергетических ресурсов при строительстве (реконструкции), содержании, ремонте, капитальном ремонте автомобильных дорог за отчетный период по видам топлива.

Расход топлива и других видов топливно-энергетических ресурсов определяется по данным поставщика или по данным измерений, выполненных непосредственно при строительстве (реконструкции), содержании, ремонте, капитальном ремонте автомобильных дорог.

19.4. При отсутствии данных о количестве израсходованных энергоресурсов расчет выбросов СО2 от дорожного хозяйства производится с использованием данных о протяженности участков автомобильных дорог, на которых за отчетный период проводились работы по строительству (реконструкции), содержанию, ремонту, капитальному ремонту, по формуле (19.2):

$$EC_{O2,y} = \sum_{b,k,y} (L_{b,k,y} \times EF_{b,k}),$$
 (19.2)*

* Формула и экспликация к ней соответствуют оригиналу. - Примечание изготовителя базы данных.

где:

 $E_{CO2,y}$ - выбросы CO2 в результате осуществления строительства (реконструкции), содержания, ремонта, капитального ремонта автомобильных дорог за период у, т CO2.

Выбросы за отчетный период (1 год) определяются по формуле (19.3):

$$E_{CO2\ 1\text{rog}} = (E_{CO2,y}/Y_{b,k}),$$
 (19.3)

где:

 $L_{b,k,y}$ - протяженность автомобильной дороги категории k на этапе жизненного цикла b, км;

 $\mathit{EF}_{b,k}$ - коэффициент выбросов CO2 на этапе жизненного цикла b автомобильной дороги технической категории k, т CO2/км;

у - период строительства (реконструкции), капитального ремонта автомобильной дороги, год;

b - этап жизненного цикла автомобильной дороги за период у (строительство, содержание, ремонт, капитальный ремонт);

k - категория автомобильной дороги в зависимости от значения автомобильной дороги (федеральная, региональная и межмуниципальная, местная).

Значения коэффициента выбросов CO2 на разных этапах жизненного цикла автомобильной дороги определенной категории (${}^{EF}_{b,k}$) приведены в таблице 19.1 настоящего приложения и учитывают специфику предприятий дорожного хозяйства, связанную с технологиями приготовления асфальто-цементобетонных смесей, производства дорожно-строительных работ, выполнения работ по строительству, реконструкции, капитальному ремонту, ремонту и содержанию автомобильных дорог разных категорий.

Таблица 19.1 - Значения коэффициента выбросов CO2 на разных этапах жизненного цикла автомобильной дороги определенной категории (EF)

Наименование	Этап жизненного цикла	Значения коэффициента выбросов СО2 на разных этапах жизненного цикла автомобильной дороги (EF) в зависимости от технической категории автомобильной дороги, т СО2/км				
		ı	II	III	IV	V
Автомобильные	Содержание	43,73	25,00	16,22	14,09	11,65
дороги федерального значения	Ремонт	533,28	271,70	195,84	190,16	52,05
	Капитальный ремонт	1556,92	713,82	544,34	526,10	175,33
	Строительство	2958,14	1356,26	1034,25	999,6	333,13
Автомобильные дороги регионального или	Содержание	37,38	21,37	7,72	4,28	2,94

межмуниципального, местного значения						
	Ремонт	419,91	177,58	128,00	98,02	26,83
	Капитальный ремонт	1541,50	679,83	477,49	290,66	96,87
	Строительство	2293,13	1004,64	808,01	740,44	246,76

20. Захоронение твердых отходов

20.1 Выбор метода расчета.

Методология для оценки выбросов от биологического разложения в анаэробных условиях твердых органических отходов на объектах размещения отходов (далее - OPO): объектах захоронения (полигонах), объектах хранения или аналогичных сооружениях $\mathrm{CH_4c}$ OPO основана на методе затухания первого порядка (ЗПП). Данный метод допускает, что способные к разложению органические компоненты в отходах медленно разлагаются на протяжении нескольких десятилетий, во время которых происходит формирование $\mathrm{CH_4u}\,\mathrm{CO_2}$. В результате выбросы $\mathrm{CH_4u}\,\mathrm{s}$ отходов, удаленных на OPO, первые несколько лет остаются высокими, а затем постепенно уменьшаются, так как способные к разложению соединения углерода перерабатываются бактериями. $\mathrm{CH_4npo}$ продолжает вырабатываться и на закрытых OPO. Эти данные автоматически учитываются при использовании метода ЗПП.

Уровни оценки выбросов CH₄ с OPO:

Уровень 1: принцип оценки метода уровня 1 основан на методе ЗПП, использующем значения для данных о деятельности и параметров.

Уровень 2: использует метод ЗПП и параметры, однако также предполагает наличие качественных применимых к конкретным регионам данных о деятельности относительно размещения отходов на ОРО в настоящее время и в прошлом.

Для расчета выбросов $\mathrm{CH}_\mathtt{d}$ из OPO существуют следующие этапы:

- Этап 1: Использовать уравнения 1.7 и 1.8 для оценки массы разложимого органического вещества в ежегодно захораниваемых на ОРО отходах.
- Этап 2: Использовать уравнения 1.5 и 1.6 для оценки количества накопленного каждый год расчета органического вещества отходов.
- Этап 3: Использовать уравнение 1.2 и 1 для оценки выбросов в рассматриваемом году, с учетом рекуперации CH_A .
 - 20.2. Модель затухания первого порядка.

Выбросы метана.

Модель ЗПП основывается на экспоненциальной функции, описывающей ту часть разложимого органического вещества захороненных в течение ряда лет отходов, которая каждый год распадается на $\mathrm{CH_4}$ и $\mathrm{CO_2}$. Часть образованного при этом метана окисляется в верхних слоях ОРО, либо может быть рекуперирована с целью получения энергии или сжигания в факельной установке. Таким образом, количество метана, выброшенного в атмосферу непосредственно со ОРО, будет значительно меньше количества образовавшегося $\mathrm{CH_4}$. Выбросы $\mathrm{CH_4}$, образующиеся от мест захоронения твердых отходов, оцениваются с помощью уравнения 1.

Уравнение 1 Выбросы СН₄ от ОРО

Выбросы $\mathrm{CH}_4 = \sum_{ij} [(\mathrm{CH}_4 \, \mathrm{oбразованный}_{ij} \, - \mathrm{R}_j) \cdot (1 - \mathrm{OX}_j)]$

где:

Выбросы $CH_4 = CH_4$, выброшенный в атмосферу от ОРО, Гг;

 ${
m CH_{40}}$ бразованный ј ${
m ij}={
m CH_{4}}$, образованный на определенном типе ОРО (потенциал образования метана) от категории/вида отходов і, в год, Гг;

і = категория/вид отходов, принятые для расчета выбросов;

j = тип OPO;

 R_j = рекуперированный CH_4 на определенном типе OPO, в год, для которого выполняется инвентаризация, Гг;

 OX_j = коэффициент окисления на определенном типе OPO в год, для которого выполняется инвентаризация, (дробь).

Так как расчеты для всех категорий/видов отходов и типов ОРО являются одинаковыми, то индексирование по ним (по і и по j) во всех представленных ниже уравнениях (1.2-1.7) не используется.

Количество метана, образующегося из биологически разложимых компонентов отходов, рассчитывается через уравнение 1.2.

Уравнение 1.2 Потенциал образования СН ₄

 CH_4 образованный = DDOCm decomp \cdot F \cdot 16/12

где:

 ${
m CH_4}$ образованный = количество ${
m CH_4}$, образованного в год, учитываемый в кадастре, Гг;

DDOCm decomp = масса разложимого органического углерода, распавшегося в год, для которого выполняется инвентаризация, Гг;

 $F = доля \ CH_4$, по объему, в образованном на OPO;

16/12 = соотношение молекулярного веса СН 4/С (соотношение).

Процесс разложения отходов.

Общее уравнение ЗПП отражает активность протекания реакции разложения, которая пропорциональна количеству остающегося реагента, то есть массе нестойкого органического углерода отходов, находящегося в благоприятных для разложения условиях (DDOCm). При этом масса такого вещества, которая останется неразложенной за определенный период времени в общем виде выражена через уравнение 1.3.

Уравнение 1.3 Уравнение затухания первого порядка

$$\texttt{DDOCmt} = \texttt{DDOCm}_0 \cdot e^{-kt}$$

где:

DDOCmt = масса способного к разложению органического углерода, который останется ко времени t на OPO, Гг;

DDOCm $_{0} =$ масса нестойкого DOC, помещенного на OPO на момент начала реакции (во время 0), Гг;

k = постоянная реакции;

t = время, прошедшее с момента начала реакции, года.

Для расчета метана, выделившегося в течение 1 расчетного года, в общем случае значение DDOCm, разложившегося на ${\rm CH_4}$ и ${\rm CO_2}$ за период T в промежутке между (t-1) и t, выражено в уравнении 1.4.

Уравнение 1.4 Ddocm, разложившийся за год т

DDOCm decompT = DDOCm $0 \cdot [e^{-k(t-1)} - e^{-kt}]$

где:

DDOCm decompT = масса органического углерода (DDOCm), разложившегося в период между (t-1) и t, Γ r;

Т = означает год, для которого производится расчет, относительно начального года 0;

 $DDOCm_{\Pi}$ = масса DOC, помещенного на OPO на момент начала реакции (во время 0), Гг;

k = постоянная реакции;

t = время, прошедшее с момента начала реакции, года.

С реакцией первого порядка количество продукта (здесь DDOCm decomp) всегда пропорционально количеству реактивного материала (здесь DDOCm). Это означает, что количество образующегося за год CH $_4$ соответствует не количеству помещенных в этот период отходов, а общему количеству оставшегося неразложенным к этому году на OPO DDOCm. Таким образом, если известно количество разлагающегося органического вещества на OPO в начале года, то при оценке выбросов каждый год рассматривается, как год номер 1. В этом случае в уравнениях общего вида 1.3 и 1.4 t=1, и расчеты производятся с помощью двух уравнений 1.5 и 1.6.

Уравнение 1.5

Масса способного к разложению органического углерода, накопленного в конце года т

$$DDOCma_{T} = DDOCmd_{T} + (DDOCma_{T-1} \cdot e^{-k})$$

Уравнение 1.6

Масса способного к разложению органического углерода, разложившегося в год T $DDOCm decomp_T = DDOCma_{T-1} \cdot (1 - e^{-k})$

где:

 ${
m DDOCm\ decomp\ T} = {
m DDOCm\ }$, разложившийся до ${
m CH_4}$ в расчетный год Т, Гг;

Т = год, для которого производится расчет (учитываемый исторический год);

 $DDOCma_T = DDOCm$, накопленный на OPO к концу года T, Гг;

 $DDOCma_{T-1} = DDOCm$ накопленный на OPO к концу года предыдущего года (T-1), Гг;

 $DDOCmd_T = DDOCm$ удаленный на OPO в год T, Гг;

k = постоянная реакции.

В уравнениях 1.5 и 1.6 расчетный год, принятый за начальный для всей серии расчетов по годам (год размещения первой порции отходов на ОРО), считается нулевым. Последний расчетный год - последний год, для которого производится инвентаризация.

На большинстве OPO отходы удаляются непрерывно в течение всего года. Однако известно, что образование CH_4 начинается не сразу после помещения отходов на OPO. Значение времени задержки изменяется в зависимости от состава отходов и климатических условий. В этом методе предполагается, что реакция распада и образование CH_4 из всех отходов, удаленных в течение расчетного года, начинается по 1 января следующего года, когда среднее время хранения отходов на OPO до начала реакции (ее задержка) составляет шесть месяцев. В реальности отходы, помещенные в начале года, начнут выделять CH_4 раньше, а отходы, помещенные на OPO в конце года - позже.

Разложимый органический углерод.

Основой расчета является оценка массы разложимого органического углерода ($\bigcirc\bigcirc\bigcirc_m$) в отходах, удаляемых на OPO (уравнение 1.7). Его значение зависит как от исходного количества захороненных отходов и их состава, так и от условий их размещения, определяющих возможность разложения органического вещества. В зависимости от выбранного способа проведения расчетов эти данные определяются на основании информации по захоронению различных категорий отходов и (или) их компонентного состава.

Уравнение 1.7 Масса разложимого DOC в отходах, помещаемых на OPO в год Т

 $\texttt{DDOCm}_T = \mathbb{W}_T \cdot \texttt{DOC}_T \cdot \texttt{DOC}_f \cdot \texttt{MCF}_T$

где:

Гг;

 DDOCm_{T} = масса захороненного на OPO в год T разложимого органического вещества (DOC),

Т = год, для которого производится расчет (учитываемый исторический год);

 W_T = масса захороненных в год T на OPO отходов, Гг;

 ${\tt DOC}_{T}$ = доля способного к разложению органического углерода в отходах, размещаемых в год ${\sf T}$;

 DOC_f = доля DOC, способного к разложению (дробь);

 MCF_T = поправочный коэффициент CH_4 для анаэробного разложения в год T (дробь).

При проведении расчетов следует учесть, что при подразделении ОРО на управляемые и неуправляемые типы с различными значениями МСF, оценку выбросов от них следует производить отдельно, а результаты суммировать.

Расчет по формуле 1.7 проводится для всех лет, которые учитываются при расчете выбросов парниковых газов от захоронения отходов на OPO.

20.3. Модели ЗПП для табличных расчетов

При применении уравнений 1.5 и 1.6 используется компактный табличный подход к оценке выбросов. Этого можно добиться с помощью построения расчетной таблицы, содержащей значения $DDOCm_T$, $DDOCm_{T}$

Таблица основана на ежегодном количестве отходов, захороненных на OPO, в течение всего учитываемого периода времени. Из этих значений рассчитывается DDOCm, помещаемый на OPO в течение каждого года (уравнение 1.7).

Оценка процесса разложения отходов с учетом ЗПП проводится с помощью прибавления $DD\bigcirc C_m$, помещенного на OPO в течение одного года, к $DD\bigcirc C_m$, оставшегося от отходов, размещенных за предыдущие годы (уравнение 1.5). Так как согласно ЗПП отходы, размещенные на OPO в текущем году, начнут разлагаться только на следующий год, расчет для следующего года $DD\bigcirc C_m$ decomp и выбросов CH_4 (уравнения 1.6, 1.2 и 1) производится из этой "промежуточной суммы" $DD\bigcirc C_m$, оставшегося на OPO. Таким образом, можно провести расчет выбросов для любого года.

В таблице 20.1 приведен пример расчета для шести лет удаления 100 единиц $DD\bigcirc Cm$ в течение каждого года с постоянной реакции в 0,1. Приведенные в последней колонке таблицы цифры - разложившийся в каждом году $DD\bigcirc Cm$, из которых можно рассчитать выбросы CH_4 .

ГОД (T)	Масса захороненного нестойкого органического углерода (DDOCm)	Масса накопленного нестойкого органического углерода (ДДОСта)	Масса разложившегося нестойкого органического углерода (DDOCm decomp)
0	100	100	0
1	100	190,5	9,5
2	100	272,4	18,1
3	100	346,4	25,9
4	100	413,5	33,0
5	100	474,1	39,3
6	100	529,0	45,1

Таблица 20.1 - Пример краткого метода расчета ЗПП

20.4. Выбор коэффициентов выбросов и параметров

20.4.1 Способный к разложению органический углерод (DOC)

Содержание измеряется как ГгС/Гг различных отходов, выражаемое в расчетах в массовых долях DOC. Оценка средневзвешенного значения содержания DOC для различных многокомпонентных категорий отходов (например, TKO) основывается на их составе (по типам отходов) и рассчитывается согласно уравнению 1.8.

 $DOC = \sum x(DOCx \cdot Wx)$

где:

DOC = доля способного к разложению органического углерода в многокомпонентных отходах;

x = вид (тип) отходов;

DOCх = доля способного к разложению органического углерода в виде отходов і;

Wx= доля вида отходов x в категории отходов.

Значения для расчета содержания DOC указаны в таблицах 20.2 (для ТКО) и 20.4 (для промышленных отходов) настоящего приложения. Похожий подход используется для оценки содержания DOC в других отходах, удаленных в регионе. Неактивная часть отходов (стекло, пластик, метал и другие неразлагающиеся отходы, см. таблицу 20.2) является значимой при определении общего количества DOC в общей массе захороненных отходов.

При наличии необходимых данных следует использовать применимые к конкретным регионам значения DOC для каждого компонента отходов. Эта информация получается из исследований процесса захоронения отходов и взятия проб со OPO, наряду с анализом содержания способного к разложению углерода в каждом компоненте таких отходов.

Таблица 20.2 - Значения содержания в различных компонентах ТКО: сухого вещества, doc, общего углерода и ископаемого углерода

	I	I	I	I	1
Компонент ТКО	Содержание сухого вещества во влажных отходах %	DOC (сырые отходы) %	DOC (сухие отходы) %	С всего (сухие отходы) %	С ископаемый в общей массе С %
Бумага/картон	75	27	36	37	2
Текстиль	80	32	40	51	20
Пищевые отходы	28	13	45	45	-
Древесина	80	41	51	51	-
Отходы от парков и садов	40	20	49	49	-
Подгузники	40	24	60	70	10
Резина и кожа	95	-	-	68	20
Пластик	92	-	-	60	100
Кости	76	41	54	54	-
Металл	100	-	-	Нет данных	Нет данных
Стекло	100	-	-	Нет данных	Нет данных
Отсев	80	7	9	17	50
Другие отходы	92	-	-	51	100

Приведенное в таблице 20.2 содержание влажности распространяется на определенные виды отходов при их образовании. В собранных отходах или, например, размещенных на ОРО, содержание влажности может меняться.

Предположительно 40 процентов текстиля является синтетическим.

Значение 80 содержание сухого вещества во влажных отходах компонента древесина имеет отношение к древесным изделиям по истечении срока годности.

Натуральные резиновые изделия содержат DOC, но практически не разлагаются в анаэробных условиях на OPO.

Значения, приведенные в таблице 20.2 в процентах, при расчетах следует переводить в доли путем деления на 100. Данные относительно усредненного состава отходов в ТКО в России приводятся в таблице 20.3.

Таблица 20.3 - Усредненный состав компонентов ТКО за 1990, 2001 и 2005 годы, % по массе* (для влажного веса отходов)

	Средняя климатическая зона		Южная климатическая зона			СеверНая климатическая зона			
	1990	2001	2005	1990	2001	2005	1990	2001	2005
Бумага	27,5	33,5	39,0	24,0	26,0	27,5	22,5	30,5	31,0
Текстиль	5,5	4,0	4,0	5,5	4,0	4,0	6,0	5,0	5,0
Пищевые отходы	34,0	40,0	32,0	40,0	44,5	41,0	32,0	35,5	32,5
Древесина	2,2	1,5	1,5	1,5	1,5	1,5	3,0	3,5	3,5
Резина и кожа	3,0	0,7	0,7	2,0	1,0	1,0	5,0	2,5	2,5
Пластик	3,5	3,5	5,5	2,0	4,5	5,5	3,0	3,5	5,5
Кости	1,25	1,5	1,5	1,5	1,5	1,5	3,0	1,5	1,5
Металл, стекло, камни	11,5	6,5	8,2	8,0	7,0	7,5	13,5	11,5	12,0
Отсев менее 16 мм	10,0	6,0	6,0	14,0	7,0	7,0	10,0	5,0	5,0
Прочие	1,5	2,7	1,5	1,5	3,0	3,5	2,0	1,5	1,5

Значения, приведенные в таблице 20.3 в процентах, при расчетах следует переводить в доли путем деления на 100.

Таблица 20.4 - Содержание DOC и ископаемого углерода в промышленных отходах (для влажного веса отходов при их образовании)

Вид промышленности	DOC %	Общее содержание С %	Содержание ископаемого С в общей массе С %	Содержание сухого в-ва %
Продукты питания, напитки и табачные изделия (за исключением отстоя сточных вод)	15	15	0	40
Текстиль	24	40	40	80
Древесина и древесные изделия	43	43	0	85
Целлюлоза и бумага (за исключением отстоя сточных вод)	40	41	2	90

Нефтепродукты, растворители и пластик	0	80	100	100
Резина	-	56	30	84
Строительство и демонтаж	4	24	83	100
Другое ³	1	4	75	90

Приведенный вид промышленности "Другое" в таблице 20.4 значения DOC используются в качестве значений для всех отходов производственной промышленности, когда данные по объему отходов в соответствии с типом промышленности являются недоступными. Отходы из горной промышленности и карьерных работ должны быть исключены из расчета, так как их объем может оказаться большим, а содержание DOC и ископаемого углерода обычно незначительно.

Значения, приведенные в таблице 20.4 в процентах, при расчетах следует переводить в доли путем деления на 100.

20.4.2 Доля фактически разложившегося способного к разложению органического углерода ($\mathbb{DOC}_{\mathbf{f}}$).

Значение $\mathrm{DOC}_{\mathbf{f}}$ зависит от многих факторов, таких как температура, влажность, pH, состав отходов и др. Значение для DOCf соответствует 0,5 (допуская, что среда на OPO является анаэробной и значение DOC включает лигнин)

Региональные значения ${\tt DOCf}$ или значения из схожих регионов используются для ${\tt DOCf}$. В расчете уровня 2 также используются отдельные значения ${\tt DOC}_{\bf f}$, полученные для различных видов отходов, однако эффективная практика заключается в использовании этих значений только при наличии репрезентативных данных по составу отходов.

20.4.3 Поправочный коэффициент для метана (МСF).

Условия разложения отходов различаются в зависимости от условий места расположения отходов на OPO. МСF применяется в связи с тем, что конструктивные особенности OPO и применяемые на ней методы управления процессами складирования и разложения отходами, в том числе для контроля состояния OPO, определяют степень анаэробности условий. Таким образом, МСF отражает практику управления твердыми отходами на OPO.

Используются отдельные данные или оценочные значения для количества отходов, захороненных на ОРО различных категорий (Таблица 20.5). Только в том случае, когда невозможно классифицировать свои ОРО, можно использовать МСГ для "ОРО вне категории".

Таблица 20.5 - Классификация ОРО и поправочные коэффициенты для метана (МСF)

Тип объекта размещения	Поправочный коэффициент для метана (МСF)
Управляемый - анаэробный	1,0
Управляемый - полу-анаэробный	0,5
Неуправляемый - глубокий (>5 м отходов) и (или) с высоким уровнем грунтовых вод	0,8
Неуправляемый - неглубокий (<5 м отходов)	0,4
ОРО вне категории	0,6

присутствовать находящиеся под контролем места для удаления отходов (т.е., отходы отправляются на специальные площадки, на которых в той или иной мере имеются контролируемая "продувка" отходов и контролируемая защита от возгорания) и при этом должно соблюдаться хотя бы одно из перечисленных условий: (i) отходы чем-либо укрываются, (ii) осуществляется их механическая спрессовка, или (iii) или отходы укрываются послойно.

Для значения показателя приведенного в таблице 20.5 "Управляемый - анаэробный" необходимо наличие находящихся под контролем мест для размещения отходов и при этом должно соблюдаться хотя бы одно из перечисленных условий: (i) отходы укрываются негерметичным материалом, (ii) имеются сточные дренажные системы, и (iii) вентиляционные системы.

Для значения показателя "Неуправляемый - глубокий (>5 м отходов) и (или) с высоким уровнем грунтовых вод" приведенного в таблице 20.5 все ОРО не соответствующие критериям управляемых ОРО, и на которых глубина отходов превышает или равна 5 метрам и (или) имеется высокий уровень грунтовых вод в верхнем уровне земли.

Для значения показателя "Неуправляемый - неглубокий (<5 м отходов)" приведенного в таблице 20.5 все OPO, не соответствующие критериям управляемых OPO и глубина которых не превышает 5 метров.

Доля твердых отходов, удаленных на OPO и MCF отображают способ управления отходами и влияние структуры OPO и практики управления на образование $\,^{\mathrm{CH}}_4$. Значения MCF, приведенные в таблице 20.5, относятся к каждой из четырех категорий OPO.

20.4.4 Доля ${\rm CH_4}$ в газе, образованном на OPO (F).

Большинство отходов на OPO образуют свалочный газ (биогаз) с приблизительным 50-процентным содержанием $\mathrm{CH_4}$. Только материалы, включающие в свой состав значительное количество жира и масла, могут производить газ с содержанием $\mathrm{CH_4}$ в размере более 50 процентов. Таким образом, значение доли $\mathrm{CH_4}$ в биогазе равно 0,5.

При выборе региональных значений F следует учесть, что долю ${\rm CH_4}$ в образованном газе с OPO нельзя путать с измерением ${\rm CH_4}$ в газе, выброшенном со OPO.

20.4.5 Коэффициент окисления (ОХ).

OX отражает количество, образовавшееся на OPO метана, которое окисляется в почве или в другом материале, покрывающем отходы.

Значение для ОХ соответствует нулю (таблица 20.6). Использование коэффициента окисления в 0,1 оправдано для покрытых, хорошо контролируемых ОРО, и определяет проникновения сквозь укрывной материал и просачивание через трещины.

Любые количества CH_4 , которые были рекуперированы из тела OPO, должны вычитаться из общего образовавшегося количества до того, как будет применен коэффициент окисления.

Тип объекта размещения Коэффициент окисления (ОХ)
Управляемый, неуправляемый и ОРО вне категории 0
Управляемый, укрытый СН 4 окисляющим материалом 0,1

Таблица 20.6 - Значения для коэффициента окисления (OX)

Значение показателя "Управляемый, неуправляемый и ОРО вне категории" приведенного в таблице 20.6 являются управляемые, но не укрытые проветриваемым материалом.

20.4.6. Период полураспада и постоянная реакции ЗПП (k).

Значение полураспада t1/2 является временем, достаточным для разложения органического вещества в отходах до половины его первичной массы. Значение полураспада определяет скорость протекания реакции разложения на каждой ОРО и зависит от широкого спектра факторов, связанных с составом отходов, климатическими условиями на ее территории, характеристикой ОРО, практикой обращения с отходами и другими.

Для получения приемлемых по точности результатов по методу ЗПП, необходимо использовать исторические данные об удалении отходов за период, насчитывающий от 3 до 5 "периодов полураспада".

В модели ЗПП и уравнениях в пункте 20.4 используется постоянная интенсивность реакции k. Отношение между временем полураспада и постоянной коэффициента протекания реакции k определяется уравнением 1.9.

Уравнение 1.9 Соотношение между полураспадом и постоянная реакции ЗПП

 $k = In(2)/t_{1/2}$

где:

 $k = постоянная реакции (_{\Gamma}^{-1});$

 $t_{1/2}$ = время периода полураспада (годы).

Два альтеативных подхода, чтобы выбрать период полураспада (или k) для проведения расчетов:

- (а) рассчитать средневзвешанную t1/2 для смешанных разных видов отходов (например, компонентов ТКО), этот подход предполагает, что разложение различных типов отходов полностью зависит друг от друга. Вариант (а) так же подходит для регионов не располагающих достаточными данными по составу ТКО.
 - (b) разделить поток отходов на виды в соответствии с их скоростью разложения.

Второй подход предполагает, что разложение различных видов отходов не зависит друг от друга и применяется в регионах, располагающих данными по составу отходов.

Для обоих вариантов значения полураспада определяются как функция климатической зоны, так как содержание влаги на OPO является существенным элементом анаэробного разложения и образования CH_4 . С помощью региональных климатических данных возможно проведение оценки образования CH_4 в различных регионах (или районах региона).

Значения k и соответствующий период полураспада приводятся в таблице 20.7 настоящего приложения. Эти значения k основываются на характеристиках, используемых в развитых странах с умеренным климатом.

Таблица 20.7 - Значения k и соответствующих периодов полураспада ($t_{1/2}$)

	Климатическая зона				
	Арктическая и умеренная (MAT < 20°C)	Тропическая (MAT > 20°C)			

Тип отходов			хая PET < 1)		жная PET > 1)		хая 1000 мм)		влажная 1000 мм)
		k	t _{1/2}						
Медленно разлагающиеся отходы	Бумажные или текстильные отходы	0,04	17	0,06	12	0,045	15	0,07	10
	Древесные отходы или солома	0,022	35 ²	0,03	23	0,025	28	0,035	20
Умеренно разлагающиеся отходы	Другие (непищевые) органические или разложимые отходы из садов и парков	0,05	14	0,1	7	0,065	11	0,17	4
Быстро разлагающиеся отходы	Пищевые отходы или отстой сточных вод	0,06	12	0,185	4	0,085	8	0,4	2
ТКО (в ц	елом)	0,05	14	0,09	7	0,065	11	0,17	4

где:

МАТ - среднегодовая температура;

МАР - среднегодовая норма осадков;

РЕТ - потенциальная эвапотранспирация;

МАР/РЕТ - соотношение МАР к РЕТ.

Среднегодовые региональные (районные) МАТ, МАР и РЕТ во временных рядах выбираются для проведения оценки выбросов.

20.4.7 Рекуперация метана (R).

Значение для рекуперации ${
m CH_4}$ соответствует нулю. Рекуперация ${
m CH_4}$ должна быть учтена лишь в тех случаях, когда есть достоверные данные о деятельности соответствующих проектов. Следует учитывать, что при оценке выбросов используется значение рекуперированного метана, а не биогаза. С учетом технологии извлечения метана, рекуперированный ${
m CH_4}$ должен вычитаться из количества, образовавшегося ${
m CH_4}$ до его окисления в верхнем слое OPO.

- 21. Биологическая переработка твердых отходов.
- 21.1. Выбор метода расчета

Выбросы ${
m CH_4}$ и ${
m N_2O}$ при биологической переработке отходов оцениваются с помощью метода, указанного в уравнениях 2 и 2.1.

Выбросы $CH_4 = \sum j(BWj \cdot EFj) \cdot 10^{-3} - R$

где:

Выбросы ${
m CH_4}$ = общее количество выбросов ${
m CH_4}$ от биологической переработки отходов, ГГ ${
m CH_4}$;

ВWj = масса органических отходов, подвергшихся переработке в соответствии с ее типом j, ГГ;

EFj = коэффициент выбросов для типа переработки j, г CH_4 /кг обрабатываемых отходов;

ј = тип биологической переработки: компостирование или анаэробное сбраживание;

R = общее количество рекуперированного CH_4 , $\mathrm{\Gammar}\ \mathrm{CH}_4$.

Уравнение 2.1

Выбросы № О при биологической переработке отходов

Выбросы $N_2O = \sum_{j} j(BW_j \cdot EF_j) \cdot 10^{-3}$

где:

Выбросы $N_2\mathbb{O}$ = общее количество выбросов $N_2\mathbb{O}$ от биологической переработки отходов, ГГ N2O ;

BWj = масса органических отходов, подвергшихся биологической обработке в соответствии с ее типом j, $\Gamma\Gamma$;

EFj = коэффициент выбросов для переработки типа j, г $N_2 O$ /кг обрабатываемых отходов;

ј= тип биологической переработки: компостирование или анаэробная.

Расчет проводится по уровням:

Уровень 1: при расчетах используются коэффициенты выбросов.

Уровень 2: при расчетах используются коэффициенты выбросов для конкретного региона.

Уровень 3: при расчетах используются данные непрерывных или периодических измерений, проводимых на конкретных установках или объектах.

21.2 Выбор коэффициентов выбросов

Выбросы, образующиеся при компостировании и анаэробной переработке отходов на биогазовых установках, будут зависеть от таких факторов, как вид обрабатываемых отходов, количество и вид используемых вспомогательных материалов (таких как древесные стружки и торф), а также технологических особенностях процесса и параметров установки.

В таблице 21.1 приведены факторы для выбросов ${
m CH_4}$ и ${
m N_2O}$ при биологической обработке.

В расчетах уровня 2 коэффициенты выбросов должны основываться на данных, учитывающих соответствующие варианты биологической переработки, применяемые в конкретном регионе.

Эффективная практика заключается в последующем использовании современных данных для их улучшения. Затем, должны быть пересчитаны соответствующим образом оценочные показатели для всех расчетных лет.

Таблица 21.1 - Коэффициенты выбросов $\,^{
m CH}_4$ и $\,^{
m N}_2{}^{
m O}$ при биологической обработке отходов

Вид биологической переработки	Коэффициен СН ₄ (г СН	ты выбросов ₄ /кг отходов)	Коэффициенты выбросов $ m N_2 \odot$ (г $ m ~N_2 \odot$ /кг отходов)		
	на основе сухого на основе н		на основе сухого веса	на основе сырого веса	
Компостирование	10	4	0,6	0,3	
Анаэробное сбраживание в биогазовых установках	2	1	Не учитываем	Не учитываем	

Допущения для обрабатываемых отходов: 25-50% DOC в сухом веществе, 2% N в сухом веществе, содержание влаги - 60%. Коэффициенты для сухих отходов рассчитаны на основании коэффициентов для влажных отходов, допуская, что содержание влаги соответствует 60% во влажных отходах.

- 22. Сжигание отходов.
- 22.1. Выбор метода расчета определения выбросов СО2.

Метод оценки выбросов CO_2 при сжигании отходов основывается на оценке эффективности процесса окисления ископаемого углерода в сжигаемых отходах, зависящего от применяемых технологий сжигания.

Необходимо отметить наличие возможности двойного учета выбросов ${\tt CO}_2$ в связи с тем, что отходы часто сжигаются на предприятиях для получения энергии или тепла.

22.2 Выбросы СО2 от сжигания твердых отходов

Расчет выбросов СО₂ производится согласно уравнению 3 и базируется на оценке количества отходов, подвергнутого инсинерации, с использованием значений для содержания сухого вещества, общего содержания углерода, доли ископаемого углерода и коэффициента окисления.

Уравнение 3 Выбросы СО₂ от сжигания отходов

Выбросы
$$CO_2 = \sum_{i,j} (ISW_{i,j} \cdot dm_{i,j} \cdot FCF_{i,j} \cdot OF_{i,j}) \cdot 44/12$$

где:

Выбросы CO_2 = выбросы CO_2 в год, для которого выполняется инвентаризация, Гг/год;

 $ISW_{i,j}$ = масса твердых отходов категории/вида і (вес влажного вещества), подвергнутых разным способам сжигания, Гг/год;

 ${
m d} m_{i,j}$ = доля сухого вещества в отходах (во влажном весе), подвергнутых разным способам сжигания:

 ${}^{{\mathbb C} F}{}_{ij}$ = доля углерода в сухом веществе (общее содержание углерода) сжигаемых отходов;

 $F \mathbb{C} F_{ij}$ = доля ископаемого углерода в общем количестве углерода сжигаемых отходов;

 $\bigcirc F_{ij}$ = коэффициент окисления;

44/12 = коэффициент преобразования из С в CO_2 ;

і = категории отходов, подвергаемых сжиганию;

ј = способ сжигания: инсинирация.

Для смешанных отходов известного компонентного состава (например, категории ТКО или промышленные), сжигаемых совместно, эффективная практика заключается в расчете выбросов CO_2 на основании данных о составе составляющих его видов (типов) отходов, как указано в уравнении 3.1.

Уравнение 3.1

Выбросы СО2 от многокомпонентных отходов

Выбросы $CO_2 = IWX \cdot \sum_X (WF_X \cdot DM_X \cdot FCF_X \cdot OF_X) \cdot 44/12$

где:

Выбросы CO_2 = выбросы CO_2 от сжигания многокомпонентного отхода, Гг/год;

IWX = общая масса многокомпонентного отхода (влажный вес), подвергнутого инсинерации, $\Gamma r/rod$;

 $\mathbb{W}F_{\mathbb{X}}$ = доля компонента x (по типу отходов) в отходе (во влажном весе), подвергнутого инсинерации);

 DM_X = доля сухого вещества в компоненте x в отходе, подвергнутого инсинерации;

СБх = доля углерода в сухом веществе (например, содержание углерода) компонента х;

FCF_X = доля ископаемого углерода в общем количестве углерода в компоненте х;

 $\bigcirc F_{X} = коэффициент окисления, (доля);$

44/12 = коэффициент преобразования из C в CO2;

х = вид (тип) отходов, составляющий многокомпонентный отход.

При этом должно соблюдаться следующее условие:

$$\sum_{X} WF_{X} = 1.$$

Если данные о деятельности по отходам доступны на основании сухого вещества, что предпочтительно, то можно использовать тоже уравнение без указания содержания сухого вещества и влажности. Также, если используются данные по доле ископаемого углерода в сухом веществе, то \mathbb{CF}_i и \mathbb{FCF}_i необходимо объединить в один компонент.

При наличии отдельных данных по инсинерации отходов эффективная практика заключается в проведении оценки выбросов отдельно для каждого типа сжигания и суммирование их итоговых результатов.

Расчет проводится на следующих уровнях:

Уровень 1: использование данных по общему количеству отходов по категориям, значений для коэффициентов выбросов.

Уровень 2: использование региональных значений для состава отходов и коэффициентов выбросов (уровень 2а, уровень 2b). В данном случае, уравнения 3 и 3.1 применяются так же, как и для метода уровня 1.

Эффективная практика заключается в использовании метода уровня 2, когда выбросы CO_2 при сжигании отходов являются ключевой категорией.

Уровень 2а требует использования региональных данных о деятельности и значений для других параметров (уравнение 3.1).

Для уровня 2b помимо использования региональных данных по составу отходов, требуется пользоваться данными по количеству сожженных отходов, разделенных по видам (типам) (уравнение 3) или составу ТКО (или других многокомпонентных отходов, уравнение 3.1), содержанию сухого вещества и углерода, доле ископаемого углерода и коэффициенту окисления. В случае наличия таких данных уровень неточности будет ниже, чем при использовании уровня 2a.

Уровень 3: используются данные по конкретным предприятиям.

22.2.1 Выбросы СО₂ при инсинерации жидких отходов.

Жидкие отходы ископаемого топлива рассматриваются как особый тип отходов, если жидкие отходы ископаемого топлива не включены в другие типы отходов (например, промышленные отходы), то выбросы от них необходимо рассчитывать отдельно.

Выбросы ${\rm CO}_2$ при инсинерации жидких отходов ископаемого топлива можно оценить при помощи уравнения 3.2.

Уравнение 3.2

Выбросы $\, {\rm CO}_2 \,$ при инсинерации ископаемых жидких отходов

Выбросы $CO_2 = \sum i(ILW_i \cdot CLW_i \cdot OF_i) \cdot 44/12$

где:

Выбросы CO_2 = Выбросы CO_2 при инсинерации ископаемых жидких отходов, Гг;

 $\mathbb{L}W_i$ = количество сожженных ископаемых жидких отходов вида і, Гг;

CLW_i = доля углерода в ископаемых жидких отходах типа i;

 \bigcirc F_i = коэффициент окисления для ископаемых жидких отходов вида i, (доля);

і = вид сжигаемых жидких отходов;

44/12 = коэффициент преобразования из С в CO_2 .

При использовании в расчете коэффициентов выбросов, жидкие отходы не подразделяются на отдельные типы или виды.

Уровни оценки выбросов СО₂ при инсинерации жидких отходов ископаемого топлива:

Уровень 1: при расчетах используются региональные данные о количестве сжигаемых жидких отходов и коэффициенты выбросов.

Уровень 2: при расчетах используются региональные данные по видам сожженных отходов, содержанию в них углерода и коэффициенту окисления.

Уровень 3: необходимо использовать данные по каждому предприятию.

22.2.2 Выбор метода для определения выбросов $N_2 \circ$.

Закись азота выделяется при относительно низких температурах сжигания - $500-950^{\circ}$ С. Другими важными факторами, влияющими на выбросы, являются тип системы контроля загрязнения воздуха, тип отходов и содержание в них азота, доля избыточного воздуха. Выбросы N_2 О при сжигании ископаемых жидких отходов считаются незначительными.

Расчет выбросов $N_2\mathbb{O}$ основан на количестве отходов, подвергнутых инсинерации, а также на коэффициентах выбросов, зависящих от применяемых технологий. Данная связь отражена в уравнении 3.3:

Уравнение 3.3 Выбросы N2O , основанные на оценке общей массы сжигаемых отходов Выбросы $N_2 O = \sum_{i,j} (TW_i \cdot EF_{i,j}) \cdot 10^{-6} *$

где:

Выбросы $N_2 \mathbb{O}$ = выбросы $N_2 \mathbb{O}$ от сжигания отходов в учитываемом в год, для которого выполняется инвентаризация, Гг/год;

 TW_i = количество отходов типа і (вес влажного вещества), подвергнутого инсинерации, Γ г/год;

 ${\rm EF_i}$ = Коэффициент выбросов ${\rm N_2O}$ (кг ${\rm N_2O}$ /Гг отходов) для отходов типа і, подвергаемых инсинерации или открытому сжиганию;

 10^{-6} = коэффициент перевода килограмма в гигаграммы;

і = категории отходов, подвергаемых инсинерации;

ј = тип сжигания.

Оценка выбросов N_2 при сжигании отходов проводится на следующих уровнях расчета:

Уровень 1: использование региональных данных по общему количеству отходов, коэффициентов выбросов и параметров.

Уровень 2: использование региональных значений количества сжигаемых отходов по категориям или видам (уровень 2а, уровень 2b) и коэффициентов выбросов для них. На этом уровне используется тот же метод расчета, что и на уровне 1. Если выбросы N_2 при инсинерации отходов являются ключевыми категориями, то эффективная практика заключается в использовании уровня 2.

Уровень 3: необходимо использовать данные по каждому предприятию.

22.3 Выбор коэффициентов выбросов.

Коэффициенты выбросов в контексте инсинерации отходов соотносят объем выделенных парниковых газов с весом отходов, подвергнутых такому типу сжигания. В случае CO_2 , также применяются данные по долевому содержанию углерода и ископаемого углерода в отходах. Для

^{*} Формула и экспликация соответствуют оригиналу. - Примечание изготовителя базы данных.

 $N_2\mathbb{O}$ уровень выбросов главным образом зависит от типа обработки и технологии сжигания.

22.3.1 Коэффициенты выбросов СО₂.

При инсинерации отходов следует оценивать выбросы ${\rm CO}_2$ по расчетному содержанию ископаемого углерода в отходах. Значения для параметров, связанных с коэффициентами выбросов, приводятся в таблице 22.1.

Таблица 22.1 - Данные для оценки коэффициентов выбросов СО2 при сжигании отходов

Параметры	ТБО	Промышленные отходы (%)	Осадки сточных вод (%)	Ископаемые жидкие отходы (%)
Содержание сухого вещества в % во влажном весе	Прим.1	Нет данных	4-8	Нет данных
Содержание С в % в сухом весе	Прим.1	50	33	80
Содержание ископаемого С % в общей массе углерода	Прим.1	90	0	100
Коэффициент окисления в % от углерода				
- инсинерация	100	100	100	100
- открытое сжигание	58	Не применяется	Не применяется	Не применяется

Для показателя ТБО в таблице 22.1 следует использовать значения из таблиц 20.2 и 20.3 и уравнения 3.3, 3.4 и 3.5.

Когда отходы сжигаются открыто, вес остатков уменьшается примерно на 47-67 процентов. Следует использовать значение 58%.

Общее содержание углерода в ископаемых жидких отходах представлено в процентном отношении к влажному весу, а не к сухому.

Значения, приведенные в таблице 22.1 в процентах, при расчетах следует переводить в доли путем деления на 100.

22.3.1.1. Общее содержание углерода (СF).

В то время как содержание углерода в сожженных отходах рассчитывается по их исходной массе, часть СF приходится на пластмассу и другие материалы, произведенные из ископаемого топлива. В таблице 22.2 пункта 22.3 приводятся значения содержания углерода для различных категорий или видов отходов. Параметры СF в процентном отношении сухого веса и доли ископаемого углерода можно объединить в один параметр: содержание ископаемого углерода в процентном отношении к сухому весу.

22.3.1.2 Доля ископаемого углерода (FCF).

При определении выбросов от сжигания отходов желательно разделить углерод в отходах согласно его происхождению на биологический и ископаемый. Для расчета выбросов СО2 при сжигании отходов используется количество FCF в отходах. FCF будет отличаться в зависимости от категории и вида отходов.

Данные следует учитывать, как компонентный, так и элементный состав сжигаемых в печах отходов и использовать полученные данные при расчете выбросов.

На уровне 2а, для оценки выбросов от ТКО при помощи формулы 3.1, следует использовать конкретные для региона данные по составу ТКО и значения.

22.3.1.3 Коэффициент окисления углерода (OF).

При сжигании отходов, большая часть содержащегося в них углерода окисляется до CO_2 . Незначительная часть C может окислиться не полностью в связи с недостатками процесса сжигания, в результате часть его не сгорает или частично окисляется до золы.

Предполагается, что у мусоросжигательных печей эффективность близка к 100%, в то время как эффективность открытого сжигания значительно ниже. В таблице 22.1 приводятся коэффициенты окисления в зависимости от применяемой практики утилизации и типа отходов.

Если выбросы ${\rm CO}_2$ определяются в регионе на основании используемой технологии или конкретного предприятия, то для определения коэффициента окисления эффективная практика заключается в использовании как количества золы (зольный остаток и зольная пыль), так и содержания углерода в золе.

22.3.2 Коэффициенты выбросов №20.

Выбросы N_2 О при сжигании отходов зависят от технологии и условий сжигания, использованной технологии уменьшения выбросов NO_x , а также состава таких отходов. При отсутствии региональных данных эффективная практика состоит в применении приведенных в таблице 22.2 коэффициентов выбросов N_2 О для различных категорий отходов и практик управления.

Указанные выше коэффициенты выбросов N_2 О при сжигании отходов имеют относительно высокий уровень погрешности и следует использовать данные по конкретному региону. Данные получаются из отчетов конкретных предприятий и исследовательских проектов. При необходимости, коэффициенты выбросов N_2 О получаются из измерений выбросов. Коэффициенты выбросов N_2 О отражают технологию очистки выбросов и отличаются в зависимости от предприятия и химического состава сжигаемых отходов.

Таблица 22.2 - Коэффициенты выбросов №20 при сжигании отходов

Категория отходов	Технология или практика управления	Коэффициент выбросов (г $N_2 \ 0$ /т отходов)	Тип веса
тко	печи постоянного и полупостоянного режима работы	50	влажный вес
тко	печи периодического действия	60	влажный вес
тко	открытое сжигание	150	сухой вес
Промышленные отходы	все типы инсинерации	100	влажный вес
Осадки сточных вод (за исключением канализационных осадков)	все типы инсинерации	450	влажный вес
Канализационные	инсинерация	990	сухой вес
осадки		900	влажный вес

- 23. Очистка и сброс сточных вод.
- 23.1. Выбросы метана из сточных вод

Расчет для определения выбросов ${
m CH_4}$ из сточных вод проводится по уровням:

Уровень 1: используются региональные данные о распределении сточных вод по системам очистки, для определения коэффициента выбросов и других параметров деятельности используются указанные значения. При использовании этого подхода выбросы от сточных вод и их отстоя оцениваются совместно, и количество удаленного отстоя считается равным нулю.

Уровень 2: предусматривает использование региональных данных о деятельности и коэффициентов выбросов, в том числе основанных на эксплуатационных измерениях выбросов из водоочистных систем. Эффективная практика на этом уровне расчетов предполагает учет количества органического компонента, извлеченного в качестве осадка сточных вод и удаленного из водоочистных сооружений для дальнейшей утилизации.

Уровень 3: для расчета используются региональные данные и параметры, а также конкретные данные для установок на крупных водоочистных сооружениях.

Метан, собранный на анаэробных сооружениях, может быть рекуперирован и сожжен в факеле или использован в энергетической установке. Количество CH_4 , извлеченного для этих целей, должно быть вычтено из общего количества выбросов метана.

- 23.1.1 Бытовые сточные воды.
- 23.1.2. Выбор метода.

Для расчета выбросов CH_4 из бытовых сточных вод эффективная практика предполагает следующие этапы:

- Этап 1: Выбрать путь и систему в соответствии с региональными данными о деятельности. Использовать уравнение 4.3 для определения коэффициента выбросов для каждой системы очистки или сброса бытовых сточных вод.
- Этап 2: Использовать уравнение 4.1 или 4.2 для оценки количества способного к органическому разложению вещества в сточных водах.
- Этап 3: Использовать уравнение 4 для оценки выбросов, с учетом удаления отстоя и (или) рекуперации CH_4 .

Количество выбросов метана зависит как от массы поступивших в сточные воды органических веществ, так и от характеристик систем их сбора, очистки и сброса. Оценка выбросов ${
m CH_4}$ основана на определении доли сточных вод, обработанных или удаленных каждой определенной системой. При расчете учитывается удаление органических веществ с отстоем сточных вод. Выбросы ${
m CH_4}$ из утилизированных или использованных осадков не входят в категорию "Очистка и сброс сточных вод".

Общее уравнение для оценки выбросов ${
m CH_4}$ из сточных вод по уровню 1:

Уравнение 4 Общее количество выбросов СН4 из бытовых сточных вод Выбросы ${ m CH_4} = \sum_{i,j} [({ m U_i \cdot T_{i,j} \cdot EF_j}) \cdot ({ m TOW - S_i}) - { m R_i}] *$

где:

^{*} Формула и экспликация соответствуют оригиналу. - Примечание изготовителя базы данных.

Выбросы ${
m CH_4}$ = выбросы ${
m CH_4}$ от бытовых сточных вод, ${
m CH_4}$ кг/год;

 $T \cap W =$ общее количество органических веществ в сточных водах, БПК кг/год;

 $T_{i,j}$ = степень применения систем очистки или сброса j, для каждой группы населения i;

Ui = доля населения в группах по урбанизации i;

і = группы населения по степени урбанизации: сельское, городское и городское, проживающее на высоко урбанизированных территориях;

ј = каждый путь или система очистки или сброса;

 ${
m EFj}$ = коэффициент выбросов от каждой использованной системы очистки или сброса, кг ${
m CH_4}$ /кг БПК;

R = количество рекуперированного метана, ${
m CH_4}$ кг/год.

Общее количество органически разлагаемого вещества в сточных водах (TOW).

Общее количество биологически разлагаемого вещества в сточных водах (TOW) зависит как от численности населения (использующего региональные системы очистки или сброса), так и от средней величины образования БПК на 1 человека. Для уровня 1 его значение получается согласно уравнению 4.1:

Уравнение 4.1

Общая масса органически разлагаемых веществ в бытовых сточных водах TOW = $P \cdot BOD \cdot 0,001 \cdot 365 \cdot I$

где:

TOW = Общая масса органических веществ в сточных водах, БПК кг/год;

Р = количество населения год, человек/год;

BOD = образование БПК на одного жителя, г/человек/сутки;

0,001 = перевод из граммов БПК в килограммы БПК;

365 = перевод из суток в год;

I = поправочный коэффициент для дополнительных промышленных сбросов БПК в систему коммунально-бытовой канализации.

Значение загрязняющих веществ, приходящихся на одного жителя, для расчета по уровню 1, составляет 60 БПК г/человек/сутки (СП 42.13330 "СНиП 2.07.01-89*).

Показатель I в уравнении 4.1 определяет количество БПК в стоках различных предприятий общественного назначения (например, рестораны или продуктовые магазины), которые так же смешаны с бытовыми сточными водами. Значение для I составляет для собранных сточных вод 1,1, а для несобранных - 1,0.

Для оценки TOW по уровню 2 используются региональные данные о поступлении загрязняющих веществ в каждую систему очистки или стока, их значения получаются согласно уравнению 4.2. В этом случае уравнение 4 должно быть модифицировано для их учета.

Масса органически разлагаемых веществ в системах очистки бытовых сточных водах $TOW_i = V_i \cdot C_i \cdot 0{,}001*$

* Формула и экспликация соответствуют оригиналу. - Примечание изготовителя базы данных.

где:

 ${
m TOW}_{
m j}$ = масса органических веществ в сточных водах системы j, БПК кг/год;

ј = каждый путь или система очистки;

 V_j = объем очищаемых или сбрасываемых сточных вод, м³ /год;

Сј = концентрация органических веществ в сточных водах, г БПК/м³;

0,001 = перевод из граммов БПК в килограммы БПК.

При отсутствии отдельных региональных данных об объемах определенного стока (например, очищаемого на месте в неканализованных районах) используются значения по водоотведению и загрязнению из СНиП 2.04.03-85 "Канализация. Наружные сети и сооружения" (СНиП 2.04.03-85) и СП 42.13330 "СНиП 2.07.01-89* Градостроительство. Планировка и застройка городских и сельских поселений" (СП 42.13330 "СНиП 2.07.01-89*) или аналогичные региональные значения.

23.1.2.1 Выбор коэффициентов выбросов.

Коэффициенты выбросов для разных источников парниковых газов от сточных вод отражают максимальный потенциал выбросов CH $_4$ ($\mathrm{B}_{_0}$) и поправочный коэффициент для метана (MCF) для каждого из них, как показано в уравнении 4.3.

Уравнение 4.3

Коэффициент выбросов СН $_4\,$ для каждого пути или системы очистки или сброса сточных вод

 $EF_j = B_o \cdot MCF_j$

где:

 $EF_j = коэффициент выбросов кг <math>CH_4$ /кг БПК;

ј = каждый путь или система очистки или сброса;

 B_0 = максимальная способность образования CH_4 , кг CH_4 /КГ БПК;*

 MCF_i = поправочный коэффициент для метана (дробь).

Значение $\rm B_{o}$ - максимальное количество $\rm CH_{4}$, которое может быть выделено из определенного количества органических веществ (оцененного в БПК или ХПК) в сточных водах, отражает химический состав этих компонентов.

Коэффициент МСF отражает предел, до которого реализуется способность образования ${
m CH_4}$ (${
m B_o}$) для каждого типа систем очистки и сброса, т.е. является показателем степени анаэробности и эффективности деятельности метаногенных бактерий. Значения МСF приведены в таблице 23.1, а для использования в расчетах системы очистки или сброса (T) подробно рассмотрены

^{*} Текст соответствует оригиналу. - Примечание изготовителя базы данных.

выше. Для системы 1 следует использовать значение 0,8 (для метантенков), для систем 2 - коэффициент 0,1 (централизованные аэробные системы с небольшим выделением метана), для 3 системы - 0,5 (септические системы). Для 4-й системы регионам следует выбрать коэффициент для отхожего места в зависимости от местных условий (или взять усредненное значение).

При использовании коэффициентов МСF, выбросы сточных вод и их отстоя должны оцениваться совместно.

Эффективная практика заключается в использовании конкретных для региона данных для B_{o} и MCF, там, где они доступны, например, на основании эксплуатационных измерений. При этом должна быть согласованность единиц измерения, используемых для разлагаемого углерода в стоках и для B_{o} . Оба параметра должны основываться на одинаковых единицах (либо БПК, либо ХПК) для расчета выбросов. При необходимости, в отношении бытовых сточных вод значение B_{o} , основанное на ХПК, можно перевести в значение, основанное на БПК, умножив его на коэффициент 2,4. Если конкретных для региона данных не существует, используются значения максимальной производительности образования CH_{4} , равное 0,6 кг CH_{4} /КГ БПК.

23.2.1 Промышленные сточные воды.

Промышленные сточные воды могут обрабатываться на месте, либо сбрасываться в бытовые канализационные системы. В последнем случае данные выбросы должны включаться в категорию выбросов бытовых сточных вод. В пункте 23 рассматривается оценка выбросов CH_4 в результате очистки сточных вод на территории предприятий.

Таблица 23.1 - Значения МСГ для бытовых сточных вод

Тип пути или системы очистки и сброса	Примечания	MCF		
Системы без обработки стоков				
Море, реки и озера	Поверхностные водные объекты с большим содержанием органических веществ могут стать анаэробными.	0,1		
Отстойники или пруды	Открытые и теплые	0,5		
Проточные коллекторы (открытые или закрытые)	Быстротечные, чистые	0		
Системы обработки стоков				
Централизованные аэробные водоочистные сооружения	Хорошо управляемые	0		
Централизованные аэробные водоочистные сооружения	Плохо управляемые и (или) перегруженные	0,3		
Установка для анаэробного сбраживания отстоя сточных вод (метантенк)	Рекуперация СН4 здесь не рассматривается.	0,8		
Анаэробные реакторы	Рекуперация СН4 здесь не рассматривается.	0,8		
Анаэробные неглубокие отстойники или пруды	Глубина менее 2 метров, использовать экспертную оценку	0,2		
Анаэробные глубокие отстойники	Глубина более 2 метров	0,8		

Септические системы	Половина БПК оседает в анаэробных резервуарах.	0,5
Отхожее место	Сухой климат, уровень грунтовых вод ниже, чем отхожее место, небольшие семьи (3-5 человек)	0,1
Отхожее место	Сухой климат, уровень грунтовых вод ниже, чем отхожее место, общественное (для большого количества людей)	0,5
Отхожее место	Влажный климат или использование промывных вод, уровень грунтовых вод выше, чем отхожее место	0,7
Отхожее место	Регулярное удаление отстоя.	0,1

23.2.2. Выбор метода.

Оценка потенциала образования CH_4 из промышленных сточных вод основывается на концентрации содержащихся в них органически разлагаемых веществ, их объеме и потребности в очистке таких стоков в анаэробных условиях. Основные источники сточных вод с большим потенциалом образования CH_4 определяются следующим образом:

- производство бумажной массы и бумаги;
- обработка мяса и птицы (скотобойни);
- производство алкоголя, пива, крахмала;
- производство органических химикатов;
- обработка других видов пищевых продуктов и напитков.

Метод оценки выбросов из промышленных сточных вод аналогичен методу, предусмотренному для бытовых сточных вод. Определение коэффициентов выбросов и данных о деятельности при этом более сложно, следует использовать нисходящий подход, включающий следующие этапы:

- Этап 1: Выбрать сектора промышленности, в которых будет происходить заметное выделение метана. Использовать уравнение 4.5 для определения общего количества органически разлагаемого углерода в сточных водах (ТОЖ) для промышленного сектора і.
- Этап 2: Использовать уравнение 4.6 для получения коэффициента выбросов. Определить коэффициент выбросов для каждого промышленного сектора, основываясь на максимальном значении способности образования метана и среднем конкретном для отрасли поправочном коэффициенте для метана.
- Этап 3: Использовать уравнение 4.4 для оценки выбросов, по возможности учесть удаление отстоя сточных вод и (или) рекуперацию ${
 m CH_4}$ и суммировать результаты.

Общее уравнение для определения выбросов ${
m CH_4}$ из промышленных сточных вод:

Уравнение 4.4 Общее количество выбросов из промышленных сточных вод

Выбросы $CH_4 = \sum_i [(TOW_i - S_i) \cdot EF_i - R_i]$

где:

Выбросы ${
m CH_4}$ = Выбросы ${
m CH_4}$ от очистки промышленных сточных вод, кг ${
m CH_4}$ /год;

 TOW_i = общее количество органически разложимого материала в промышленных сточных водах і, кг ХПК/год;

і = тип сточных вод в зависимости от сектора промышленности и соответствующая ему система очистки;

 S_i = количество органического компонента удаленного как отстой кг ХПК/год;

 EF_i = коэффициент выбросов для систем очистки или сброса сточных вод промышленности і, кг CH_4 /кг ХПК (если в отраслях промышленности используется более одного метода очистки, то этот показатель нужно будет привести к взвешенному среднему значению);

 \mathbb{R}_i = количество рекуперированного кг CH $_{4}$ /год.

Уравнение 4.5 Органически разлагаемый материал в промышленных сточных водах $T \bigcirc W_i = P_i \cdot W_i \cdot C \bigcirc D_i$

где:

 TOW_i = общее количество органически разлагаемого материала в промышленных сточных водах і, кг ХПК/год;

і = промышленный сектор;

 P_{i} = общий объем производства промышленного сектора i, т/год;

 W_i = собранные сточные воды, м³/т продукта;

 ${\tt COD}_i$ = содержание разлагаемых промышленных органических компонентов в сточных водах кг XПК/м 3 .

В таблице 23.2 приводятся примеры данных о промышленных сточных водах. При использовании данных о содержании ХПК в стоках следует учитывать, что некоторое количество отстоя сточных вод извлекается из водоочистных сооружений до их биологической очистки и, таким образом, не участвовать в процессе выделения CH_4 .

Рекуперация метана (R)

R должна быть учтена только при наличии достоверных данных о соответствующих проектах. При использовании региональных данных об объеме (или массе) рекуперированного биогаза их следует пересчитывать для получения данных о соответствующей массе метана. При отсутствии данных о R она считается равной нулю.

Таблица 23.2 - Примеры данных о промышленных сточных водах

Тип производства	Образование сточных вод (м ³ /тонн)	ХПК (кг/м ³)
Перегонка спирта	24	11
Пиво и солодовые напитки	6,3	2,9

Молочная продукция	7	2,7
Рыбопереработка	13	2,5
Мясо и птица	13	4,1
Органические химические вещества	67	3
Нефтепереработка	0,6	1,0
Пластик и смола	0,6	3,7
Бумажная масса и бумага	162	9
Мыло и моющие средства	3	0,8
Производство крахмала	9	10
Рафинирование сахара	11	3,2
Растительные масла	3,1	0,8
Овощи, фрукты, соки	20	5,0
Вино и уксус	23	1,5

Расчет по типу производства "Бумажная масса и бумага" приведенный в таблице 23.2 производится только при наличии данных об отсутствии предварительной утилизации осадка.

Удаление отстоя сточных вод (S).

Некоторое количество отстоя после очистки сточных вод утилизируется или передается для вторичного использования. Это составляет количество органических отходов, которые следует вычесть из существующего показателя $T \bigcirc W$. Эффективная практика заключается в обеспечении согласованности между секторами: количество отстоя сточных вод, извлеченного из $T \bigcirc W$ должно совпадать с количеством отстоя, переданного на OPO, или утилизированного каким-либо иным способом, а также использованного вторично.

При использовании указанных коэффициентов выбросов, выбросы метана от осадков, обрабатываемых на водоочистных сооружениях совместно с загрязненными стоками, учитываются совместно с ними. В этом случае, масса удаляемого ила принимается равной нулю.

23.2.3 Выбор коэффициента выбросов.

Коэффициенты выбросов для разных систем очистки промышленных сточных вод отражают максимальный потенциал выбросов $\mathrm{CH}_4(\mathbb{B}_0)$ и поправочный коэффициент для метана (МСF) для каждой из них, как показано в уравнении 4.6.

Уравнение 4.6 Коэффициент выбросов ${
m CH_4}$ для промышленных сточных вод ${
m EF_i} = {
m B_o \cdot MCF_i} *$

где:

 $\mathtt{EF_{i}}$ = коэффициент выбросов для каждого пути или системы очистки или сброса, кг $\mathtt{CH_{4}/KT}$ XПК;

^{*} Формула и экспликация соответствуют оригиналу. - Примечание изготовителя базы данных.

і = путь или система очистки или сброса для сточных вод сектора промышленности;

 ${\rm B}_{\rm o}$ = максимальная способность образования ${\rm CH}_4$, кг ${\rm CH}_4$ /кг ХПК;

MCFi = поправочный коэффициент для метана (дробь).

Существует огромная разница потенциала выбросов ${
m CH_4}$ между различными типами промышленных сточных вод. Эффективная практика состоит в том, чтобы использовать значение ХПК для ${
m B_0}$, составляющее 0,25 кг CH $_4$ /КГ ХПК.

МСГ является показателем предела потенциала образования СН $_4$ ($_{\rm B_0}$), реализуемого в каждом типе метода очистки и указывает на степень анаэробности системы. Таблица 23.3 включает значения для МСГ различных систем очистки. При отсутствии такой информации о применении систем очистки используется значение МСГ, равное 0,4.

- 24. Выбросы закиси азота из сточных вод.
- 24.1 Выбор метода расчета.

Выбросы закиси азота (N_2 O) могут происходить на водоочистных станциях или из азотосодержащих сточных вод после сброса их в реки, озера или моря. Прямые выбросы от нитрификации и денитрификации на водоочистных сооружениях рассматриваются как незначительный источник, и не предполагает их учет. Оценку таких выбросов можно выполнять только в тех регионах, в которых преобладают централизованные системы очистки сточных вод с этапами нитрификации и денитрификации на уровне оценки выбросов от каждой станции. Далее рассматриваются выбросы N_2 O после отвода сточных вод в водоемы.

Таблица 23.3 - Значения МСГ для промышленных сточных вод

Типы путей или систем очистки и сброса сточных вод	Примечания	MCF			
Систел	Системы без обработки стоков				
Сброс в моря, реки и озера	Водные объекты с большим содержанием органических веществ могут стать анаэробными, однако здесь это не учитывается.	0			
Системы очистки сточных вод					
Аэробные очистные сооружения	Хорошо управляемые. Некоторое количество СН ₄ выделяется из отстойников и других зон.	0			
Аэробные очистные сооружения	Плохо управляются. Перегружены	0,3			
Установка для анаэробного сбраживания отстоя сточных вод	Рекуперация СН 4 здесь не учитывается	0,8			
Анаэробный реактор	Рекуперация СН ₄ здесь не учитывается	0,8			
Анаэробные неглубокие отстойники	Глубина менее 2 метров	0,2			
Анаэробные глубокие отстойники	Глубина менее 2 метров	0,8			

Методы расчета не включают выбросы $N_2 \mathbb{O}$ из промышленных источников, за исключением

промышленных сточных вод, которые сбрасываются в канализационную систему совместно с бытовыми сточными водами.

Методология для определения выбросов из стоков аналогична методам расчета для определения косвенных выбросов $N_2\mathbb{O}$.

Упрощенное уравнение 4.7:

Уравнение 4.7

Выбросы $N_2 O$ из отвода сточных вод

Выбросы $N_2O = N_{CTOK} \cdot EF_{CTOK} \cdot 44/28$

где:

Выбросы $N_2 O$ = Выбросы $N_2 O$ от сточных вод, кг $N_2 O$ /год;

NCTOK = азот в отводе сточных водах, сброшенных в водную среду, кг N/год;

 ${\tt EF}$ сток = коэффициент выбросов ${\tt N}_2{\tt O}$ выбросов при сбросе сточных вод кг ${\tt N}_2{\tt O}$ - N/кг N;

44/28 = коэффициент для преобразования кг $N_2 \circ$ - N в кг $N_2 \circ$.

Уравнение 4.8

Общее количество азота в отводе очищенных сточных вод

N CTOK = (P · Протеин · FNPR · FN0N-C0N · FIND-COM) - N ОТСТОЙ

где:

N_{CTOK} = общее годовое количество азота в отводе сточных вод, кг N/год;

Р = численность населения;

 Π ротенн = годовое потребление протеина на душу населения, кг/человек/год;

 $F_{\rm NPR}$ = доля азота в протеине;

 $F_{
m NDN-CDN}$ = коэффициент для непотребленного протеина, сброшенного в сточные воды;

 $F_{\rm IND\text{-}COM}$ = коэффициент для промышленного и коммерческого количества протеина, попутно сброшенного в канализационную систему;

 $N_{\text{ОТСТОЙ}}$ = азот, удаленный с отстоем сточных вод, кг N/год.

Значения F_{NPR} , $F_{N0N-C0N}$, $F_{IND-COM}$ и N_{OTCTOM} для расчета приведены в таблице 23.4.

Эффективная практика не предполагает учет удаления азота с отстоем и его значение равно нулю.

24.2. Выбор коэффициентов выбросов.

Коэффициент выбросов $N_2 \circ$ из оттока азота бытовых сточных вод приведен в таблице 23.4. Его значение основывается на том, что весь азот сбрасывается вместе с отводом сточных вод.

Таблица 23.4 - Параметры для оценки выбросов 1N 🤈 🤇	ица 23.4 - Параметры для оценки выбросов	N_2O
---	--	--------

Показатель	Значение	Размерность
F _{NPR}	0,16	кг № /кг протеина
^N отстой	0	кг Ŋ /год
F _{NON-CON}	1,2	коэффициент
F _{IND-COM}	1,25	коэффициент
ЕF сток	0,05	кг И ₂ О-И /кг И

Приложение к методике количественного определения объема поглощений парниковых газов, утвержденной приказом Минприроды России от 27 мая 2022 года N 371

Методы расчета количественного определения объема поглощений парниковых газов

- 1. Оценка объемов поглощений парниковых газов в результате реализации проекта по лесовосстановлению.
- 1.1. При выполнении проектов по лесовосстановлению следует проводить регулярную оценку (с периодичностью не менее 5 лет) достигнутых изменений запасов углерода в пулах биомассы, мертвой древесины, подстилки и почвы по формуле 1.

$$\Delta C = \Delta C_{\text{биомасса}} + \Delta C_{\text{мертвая древесина}} + \Delta C_{\text{подстилка}} + \Delta C_{\text{почва}}$$
 (1)

где:

 ΔC - суммарное изменение в запасах углерода после лесовосстановления; тонны С год $^{-1}$;

 $\varDelta C_{6uomacca}$ - изменение в запасах углерода в пуле биомассы, тонны С год $^{-1}$;

 $\Delta C_{Mepmeas\ \partial peeecuna}$ - изменение в запасах углерода в пуле мертвой древесины, тонны С год $^{-1}$;

 $\varDelta C_{no\partial cmunka}$ - изменение в запасах углерода в пуле подстилки, тонны С год $^{-1}$;

 $\varDelta C_{noчea}$ - изменение в запасах углерода в пуле почвы, тонны С год $^{-1}$.

Оценка изменений запасов углерода в пуле биомассы при лесовосстановлении земель выполняется по формуле 2.

$$\Delta C_{\textit{биомасса}} = (C_{\textit{nocre}} _ \textit{биомасса} - C_{\textit{до}} _ \textit{биомасса}) \times A_{\textit{recosoccma новление}} \ / \ D * (2)$$

* Формула и экспликация соответствуют оригиналу. - Примечание изготовителя базы данных.

где:

 $\Delta C_{\mathit{биомасса}}$ - изменение в запасах углерода в пуле биомассы, тонны С год $^{-1}$;

 $C_{ exttt{TOCIDE}_6 exttt{HOM-BCCGA}}$ - запасы углерода в пуле биомассы после выполнения работ по лесовосстановлению; тонны C га $^{-1}$:

 $C_{{\tt ДО_6}{\tt HOMACC\,8}}$ - запасы углерода в пуле биомассы до работ по лесовосстановлению; тонны С га $^{-1}$:

 $\mathbb{A}_{\mathtt{лисовосстановление}}$ - площадь земель, на которых выполняется проект по лесовосстановлению; га;

D - период времени между экспериментальными измерениями запаса углерода в пуле биомассы на землях проекта, лет.

Для оценки запасов биомассы используется периодический (ежегодно или 1 раз в 5-10 лет) учет древостоя, саженцев и подроста древесных видов, появившегося в результате естественного возобновления.

К древостою относятся деревья с диаметром стволов на высоте 1,3 м более 8 см.

К подросту относят молодые деревья с диаметром ствола на высоте 1,3 м менее 8 см.

Учет проводится следующим методом:

На участках площадью до 5 гектар закладывается 30 учетных площадок, на делянках от 5 до 10 га - 50 и свыше 10 гектар - 100 площадок. Размер площадок - для учета древостоев 400 м 2 , для учета подроста - 100 м 2 . При учете указывается порода, высота, для древостоя - диаметр ствола на высоте 1,3 м. Самосев возрастом 1-2 года не учитывается.

Количество углерода в пуле биомассы древостоя рассчитывается для каждой древесной породы по формуле (3):

$$C_{6uomacca} = 0.5\sum (a(d_i^2 h_i)b)$$
 (3)

где:

С биомасса - углерод в биомассе древостоя, кг абсолютно сухого веса;

0,5 - коэффициент пересчета биомассы в углеродные единицы;

d_i - диаметр ствола і на высоте 1,3 м, см;

 h_i - высота дерева і, м;

а и b - коэффициенты аллометрического уравнения для разных фракций и древесных пород (таблица 24).

Таблица 24. Значения коэффициентов аллометрического уравнения для определения абсолютно-сухой биомассы фракций древостоев в зависимости от диаметра и высоты деревьев

Фракции Коэффициент Значения коэффициентов регрессионных уравнений по породам	Фракции	Коэффициент	Значения коэффициентов регрессионных уравнений по породам
---	---------	-------------	---

фитомассы		ель	сосна	береза
Надземная	а	0,0533	0,0217	0,5443
часть	b	0,8955	0,9817	0,6527
Корни	а	0,0239		0,0387
	b	0,8408		0,7281
Всего	а	0,1237		0,0557
	b	0,8332		0,9031

Расчет количества углерода в надземной биомассе для каждого вида подроста и подлеска осуществляется по формуле (4):

$$C_{\text{надз}_6иомасса} = 0,5 \sum (a h_i^b) * (4)$$

где:

С надз биомасса - количество углерода в надземной биомассе подроста/подлеска, кг;

0,5 - коэффициент пересчета биомассы в углеродные единицы;

 h_i - высота стволов подроста деревьев/кустарников, м;

а и b - коэффициенты аллометрического уравнения для надземной биомассы.

Для оценки запасов углерода в подземной биомассе древостоя или подроста используется соотношение надземной биомассы к подземной биомассе, которое принимается равным 0,39 (при запасе надземной биомассы менее 75 т/га) или 0,24 (при запасе надземной биомассы более 75 т/га).

- 2. Проведение экспериментальных измерений запасов углерода в пулах подстилки и почвы на землях, предназначенных для лесовосстановления.
- 2.1. Для выполнения репрезентативных измерений динамики запасов углерода в пулах подстилки и почвы осуществляется закладка постоянных пробных площадей, в пределах которых будет выполняться отбор образцов случайным образом в течение всего времени проекта. В зависимости от общей площади территории, отведенной под проект, каждая пробная площадь должна быть от 0,5 до 1 га.
- 2.2. При выборе схемы закладки пробных площадей учитываются масштабы территории проекта и ключевые параметры окружающей среды (например, рельеф). Последний фактор служит в качестве параметра стратификации, и при выборке обеспечить полный пространственный учет неоднородностей территории. Периоды проведения повторных измерений составляют 5 лет.
- 2.3. Отбор проб подстилки проводится на площадках 50 см х 50 см в 10-кратной повторности в пределах каждой пробной площади. Образцы подстилки высушиваются до абсолютно сухого состояния (нулевая влажность) и взвешиваются. Расчет запаса углерода в пуле подстилки проводят путем умножения абсолютного сухого веса пробы на среднее содержание углерода, которое принимается равным 0,4.

Отбор проб почв проводится в соответствии с "ГОСТ 17.4.3.01-2017. Межгосударственный стандарт. Охрана природы. Почвы. Общие требования к отбору проб" и "ГОСТ 17.4.4.02-2017. Межгосударственный стандарт. Охрана природы. Почвы. Методы отбора и подготовки проб для

^{*} Формула и экспликация соответствуют оригиналу. - Примечание изготовителя базы данных.

химического, бактериологического, гельминтологического анализа" 2 (далее - ГОСТ 17.4.3.01-2017 и ГОСТ 17.4.4.02-2017 соответственно).

Отбор проб почв проводится с учетом вертикальной структуры, неоднородности покрова почвы, рельефа и климата местности, а также с учетом особенностей загрязняющих веществ или организмов. Отбор проб проводится на пробных площадях, закладываемых так, чтобы исключить искажение результатов анализов под влиянием окружающей среды. Пробные площади намечаются по координатной сетке, с указанием их номеров и координат.

Пробы отбираются по профилю из почвенных горизонтов или слоев с таким расчетом, чтобы в каждом случае проба представляла собой часть почвы, типичной для генетических горизонтов или слоев данного типа почвы. При исследовании изменений запасов углерода почв пробы отбираются с горизонта с глубины от 0 до 5 см и от 5 до 20 (максимум до 100) см.

Следует отобрать не менее одной объединенной (смешанной) пробы весом не менее 1 кг с пробной площади от 0,5 до 1 га, состоящей из 5-10 точечных проб.

Пробы почвы для химического анализа высушивают до воздушно-сухого состояния по ГОСТ 5180-2015 "Грунты. Методы лабораторного определения физических характеристик" (далее - ГОСТ 5180-2015). Воздушно-сухие пробы хранятся в матерчатых мешочках, в картонных коробках или в стеклянной таре. Для определения химических веществ проба почвы в лаборатории рассыпается на бумаге или кальке и разминаются пестиком крупные комки. Затем выбираются включения - корни растений, насекомых, камни, стекло, уголь, кости животных, а также новообразования - друзы гипса, известковые журавчики и другое. Почва растирается в ступке пестиком и просеивается через сито с диаметром отверстий 1 мм. Отобранные новообразования анализируются отдельно и подготавливаются к анализу так же, как проба почвы.

2.4. Химический анализ на общее содержание органического вещества почв проводится по методу, основанному на окислении органического вещества раствором двухромовокислого калия в серной кислоте и последующем определении трехвалентного хрома, эквивалентного содержанию органического вещества, на фотоэлектроколориметре. Допускаемые относительные отклонения от аттестованного значения стандартного образца для двусторонней доверительной вероятности P = 0,95 указаны в таблице 24.1.

Таблица 24.1. Допускаемые относительные отклонения от аттестованного значения стандартного образца для двусторонней доверительной вероятности P = 0,95

Массовая доля органического вещества, %	Допускаемые отклонения, % (отн.)
До 3	20
Св. 3 до 5	15
□ 5□ 15*	10

^{*} Текст соответствует оригиналу. - Примечание изготовителя базы данных.

Содержание углерода в органическом веществе почв принимается равным 58%. Пересчет на

¹ Введен в действие приказом Росстандарта от 01.06.2018 N 302-ст "О введении в действие межгосударственного стандарта".

 $^{^2}$ Введен в действие приказом Росстандарта от 17.04.2018 N 202-ст "О введении в действие межгосударственного стандарта".

³ Введен в действие приказом Росстандарта от 03.11.2015 N 1694-ст "О введении в действие межгосударственного стандарта".

запас углерода почвы производится с учетом объемной массы почвы (r см $^{-3}$) по формуле (5).

$$C_{\text{почва}} = \text{Opr}\% *H *O6.macca*58/100 (5)$$

где:

 $C_{ exttt{mo-vms}a}$ - запас углерода в пуле почвы на землях, предназначенных для лесовосстановления, тонн С га $^{-1}$:

Орг% - содержание органического вещества в смешанном почвенном образце, %;

H - глубина отбора проб почвы (например, 20 - при отборе до 20 см и 30 - при отборе до 30 см и так далее), см;

Об.масса - объемная масса почвы, г см-3;*

58/100 - коэффициент для перевода в единицы углерода.

В случае возникновения пожаров на территории, на которой реализуется проект, оценка прямых выбросов парниковых газов (${\rm CO_2}$, ${\rm CH_4}$, ${\rm N_2O}$) от пожаров проводится по формуле (6):

$$L_{\text{mowap}} = A * M_B * C_f * G_{ef} * 10^{-3}$$
 (6)

где:

 $L_{\text{пожар}}$ - количество выбросов парниковых газов от пожара; тонн каждого парникового газа, например, CO_2 , CH_4 , N_2O ;

А - выжигаемая площадь, га;

 ${\mathbb M}_{\mathsf B}$ - масса доступного для горения топлива (биомасса, подстилка и мертвая древесина), тонн/га;

 $\mathbb{C}_{\mathbf{f}}$ - коэффициент сгорания; не имеет размерности. Используются значения 0,43 для верхового пожара и 0,15 для низового пожара;

 $G_{
m ef}$ - коэффициент выбросов; г/кг сжигаемого сухого вещества (таблица 24.2)

Таблица 24.2. Коэффициенты выбросов основных парниковых газов при пожарах, г кг $^{-1}$ сжигаемого вещества (использовать как количественное значение для \mathbb{G}_{ef})

Категория	CO ₂	CH ₄	N ₂ O
Леса	1569 ± 131	4,7 ± 1,9	0,26 ± 0,07

В случае, если проект осуществляется на предварительно осушенных землях, оцениваются ежегодные выбросы CO_2 , CH_4 и N_2O по следующим формулам:

^{*} Текст соответствует оригиналу. - Примечание изготовителя базы данных.

* Формула и экспликация соответствуют оригиналу. - Примечание изготовителя базы данных.

где:

 ${\rm CO}_2$ organic-выбросы ${\rm CO}_2$ от осущенных почв, тонн ${\rm CO}_2$;

 $A_{\text{осущ}}$ - площадь осушенных почв, га;

EF - коэффициент выброса $^{\rm CO}_2$ от осушенных почв, тонн C га $^{-1}$ год $^{-1}$ (значение 0,71 тонн C га $^{-1}$ год $^{-1}$).

где:

 $N_2O_{organic}$ - выбросы N_2O от осушенных почв, кг N_2O ;

А_{осущ}- площадь осушенных почв, га;

 EF_{N_2O} - коэффициент выброса N_2O от осушенных почв, кг N - N_2O га $^{-1}$ год $^{-1}$ (значение 1,71 кг N - N_2O га $^{-1}$ год $^{-1}$).

Оценка выбросов метана от осушенных органогенных почв выполняется по формуле (9).

где:

 $\mathrm{CH}_{4_\mathrm{organic}}$ - выбросы метана, кг CH_4 ;

Аосуш - площадь осушенных почв, га;

Frac ditch - доля общей площади под осушительными каналами, не имеет размерности;

 ${
m EF_land}$ - коэффициент выбросов для участков, не занятых осушительными каналами, кг ${
m CH_4\,ra^{-1}}$ год $^{-1}$;

 ${
m EF_ditch}$ - коэффициент выбросов для осушительных канав, кг ${
m CH_4}$ га $^{-1}$ год $^{-1}$.

Используются следующие коэффициенты:

Frac_ditch = 0,025 CH_4 кг га⁻¹ год⁻¹;

 EF_1 and = 4,5 CH_4 кг га⁻¹ год⁻¹;

 $EF_{ditch} = 217 CH_{4} кг га^{-1} год^{-1}$.

2.5. Расчет эмиссии CO_2 от сжигания ископаемого топлива в рамках деятельности по проекту осуществляется по формуле (10):

$$C_{FUEL} = \sum_{k=0}^{n} Vk * EFk * (10)$$

* Формула и экспликация соответствуют оригиналу. - Примечание изготовителя базы данных.

где:

 C_{FUEL} - выбросы CO_2 от сжигания топлива, тонн;

Vk - объем сожженного топлива k;

 \mathtt{EFk} - коэффициент эмиссии \mathbb{CO}_2 от сжигания топлива k.

Данные о коэффициентах выбросов парниковых газов по видам топлива приведены в Приложении N 2 к настоящей Методике.

В расчет включаются различные виды топлива, произведенные с использованием ископаемых энергетических ресурсов, в том числе бензин, керосин, дизельное топливо и другие.

Перевод из единиц углерода в CO_2 осуществляется по формуле (11) путем умножения изменений запасов углерода на -44/12.

$$CO_2 = \Delta C^*(-44/12)$$
 (11)

где:

 CO_2 - поток CO_2 , тонн CO_2 ;

 $\triangle C$ - изменение запасов углерода, тонн C;

44/12 - пересчетный коэффициент, не имеет размерности.

Пересчет выбросов метана в ${\rm CO}_2$ -эквивалент проводится путем умножения на значение потенциала глобального потепления 25. Пересчет выбросов закиси азота в ${\rm CO}_2$ -эквивалент проводится путем умножения на значение потенциала глобального потепления 298. Расчеты проводятся по формуле (12).

$$CO_2$$
 -экв.= ПГ * ПГП (12)

где:

 ${\rm CO}_2$ -экв. - величина выбросов или поглощения иных парниковых газов, кроме ${\rm CO}_2$, в единицах ${\rm CO}_2$ эквивалента, тонн;

ПГ - величина выброса или поглощения иного парникового газа, кроме СО2, тонн;

ПГП - потенциал глобального потепления данного парникового газа, не имеет размерности (25 для СН $_4$; 298 для $\rm ~N_2$ $\rm ^{\circ}$).

- 3. Оценка объемов поглощений парниковых газов в результате реализации проекта по лесоразведению.
- 3.1. При выполнении проекта по лесоразведению проводится регулярная оценка (с периодичностью не более 5 лет) достигнутых изменений запасов углерода в пулах биомассы, мертвой древесины, подстилки и почвы, а также ежегодную оценку выбросов парниковых газов в результате осушения органогенных почв, от пожаров и от сжигания ископаемого топлива, согласно формулам, представленным в пунктах 1 и 2 Приложения N 3.

- 4. Оценка объемов поглощений парниковых газов в результате реализации проекта по рекультивации земель.
- 4.1. Регулярную оценку достигнутых изменений запасов углерода в пулах биомассы и почвы при выполнении проектов, направленных на рекультивацию земель, проводится с периодичностью не более 5 лет по формуле (13).

$$\Delta C_{\text{конверсия}} = \Delta C_{\text{биомасса}} + \Delta C_{\text{почва}}$$
 (13)

где:

 $\Delta C_{\text{конберсия}}$ - суммарное изменение в запасах углерода в углеродных пулах биомассы и почвы на рекультивированных землях; тонны С год $^{-1}$;

 $\Delta C_{\it Guomacca}\,$ - изменение в запасах углерода в пуле биомассы на рекультивированных землях, тонны С год $^{-1}$;

 $\Delta C_{noчea}$ - изменение в запасах углерода в пуле почвы на рекультивированных землях, тонны С год $^{-1}$.

Оценка изменений запасов углерода в пуле биомассы рекультивированных земель выполняется по формуле (14).

$$\Delta C_{\text{биомасса}} = (C_{\text{после}} \quad \text{биомасса} - C_{\text{до}} \quad \text{биомасса}) \times A_{\text{рекультивация}} / D_{\text{(14)}}$$

где:

 $\Delta C_{\it биомасса}$ - изменение в запасах углерода в пуле биомассы на рекультивированных землях, тонны С год $^{-1}$;

 $C_{\text{после_биом acca}}$ - запасы углерода в пуле биомассы после выполнения комплекса мероприятий по рекультивации; тонны С га $^{-1}$;

 $C_{{
m до_биомасс a}}$ - запасы углерода в пуле биомассы до выполнения комплекса мероприятий по рекультивации; тонны С га $^{-1}$;

 $A_{
m perультивация}$ - площадь рекультивированных земель, на которых выполняется проект; га год $^{-1}$;

D - период времени между экспериментальными измерениями запаса углерода в пуле биомассы на землях проекта, лет.

Оценка изменений запасов углерода в пуле почвы рекультивированных земель выполняется по формуле (15).

$$\Delta C_{noчea} = (C_{nocne_noчea} - C_{\partial o_noчea}) \times A_{perynsmueayus} / D * (15)$$

где:

 $\Delta C_{noчea}$ - изменение в запасах углерода в пуле почвы на рекультивированных землях, тонны С

^{*} Формула и экспликация соответствуют оригиналу. - Примечание изготовителя базы данных.

год $^{-1}$;

 $C_{ exttt{после}_ exttt{почва}}$ - запасы углерода в пуле почвы после выполнения комплекса мероприятий по рекультивации; тонны С га $^{-1}$;

 $C_{{\tt ДО_{TO}}{\tt QB}{\tt R}}$ - запасы углерода в пуле почвы до выполнения комплекса мероприятий по рекультивации; тонны С га $^{-1}$;

 $\mathbb{A}_{ ext{рекультивация}}$ - площадь рекультивированных земель, на которых выполняется проект; га год $^{-1}$;

D - период времени между экспериментальными измерениями запаса углерода в пуле почвы земель проекта, лет.

Для точного определения начальных запасов углерода в пулах биомассы ($^{\text{С}}_{\text{до_биомасс a}}$) и почвы ($^{\text{С}}_{\text{до_почва}}$) первое экспериментальное исследование выполнять непосредственно перед началом проведения комплекса мероприятий, направленных на рекультивацию земель.

Для определения конечных запасов ($^{\text{С}}_{\text{после}}$ _биомасса) и ($^{\text{С}}_{\text{после}}$ _почва) последующие экспериментальные измерения следует проводить непосредственно после выполнения соответствующих мероприятий, если период проекта составляет 1 год. В случае, если период выполнения проекта предусматривает более длительный период, то измерения следует проводить далее регулярно каждые 5 лет для контроля достигнутых результатов (в 5-летних циклах начальными значениями ($^{\text{С}}_{\text{до}}$ _биомасса и $^{\text{С}}_{\text{до}}$ _почва) становятся предыдущие последние измеренные значения запасов углерода в пулах биомассы и почвы).

Период времени D будет составлять 1 год при первичной оценке достигнутых результатов непосредственно после выполнения мероприятий и будет равен 5 годам для последующих расчетов.

Между годами экспериментальных измерений достигнутый результат принимается равным последней оценке.

После получения каждых следующих результатов полевых измерений запасов углерода, результат, достигнутый в течение предыдущих 5 лет, подлежит пересмотру.

В случае возникновения пожара на землях, на которых реализуется проект, следует оценивать выбросы СО₂ и иных парниковых газов в соответствии с формулой (16).

$$L_{\text{mowap}} = \text{An *MB *C}_{f} *G_{ef} *10^{-3} (16)$$

где:

 $L_{\text{пожар}}$ - количество выбросов от пожара, тонн каждого парникового газа, например, CO_2 , CH_4 и N_2O ;

An - площадь, пройденная пожаром, га;

m MB * Cf - произведение массы доступного для горения топлива и коэффициента сгорания, равный потреблению топливной массы при пожаре, тонн сухого вещества га $^{-1}$. Для расчетов используется среднее значение запасов биомассы на землях проекта;

 $G_{\rm ef}$ - коэффициент выбросов; г кг $^{-1}$ сжигаемого сухого вещества (указан в таблице 24.3).

Таблица 24.3. Коэффициенты выбросов основных парниковых газов при пожарах на рекультивированных землях, г кг⁻¹ сжигаемого вещества (использовать как количественное значение для Ge f)

Категория	CO ₂	CH ₄	N ₂ O
Луговые угодья	1613 ± 95	2,3 ± 0,9	0,21 ± 0,10

В случае, если проект осуществляется на предварительно осушенных землях, ежегодные выбросы ${\rm CO_2}$, ${\rm CH_4}$ и ${\rm N_2O}$ оцениваются по следующему методу:

где:

 ${
m CO}_{2_{
m organic}}$ - выбросы ${
m CO}_2$ от осушенных почв рекультивированных земель, тонн ${
m CO}_2$;

Аосуш - площадь осушенных почв рекультивированных земель, га;

EF - коэффициент выброса CO_2 от осушенных почв рекультивированных земель, тонн C га $^{-1}$ год $^{-1}$ (значение 5,82 тонн C га $^{-1}$ год $^{-1}$).

$$N_2O_{organic} = Aocyш *EF_{N_1N2O} *44/28$$
 (18)

где:

 N_2 О_organic - выбросы N_2 О от осушенных почв рекультивированных земель, кг N_2 О;

Аосуш - площадь осушенных почв рекультивированных земель, га;

 EF_{N_N2O} - коэффициент выброса N_2O от осушенных почв рекультивированных земель, кг $N-N_2O$ га $^{-1}$ год $^{-1}$ (значение 9,5 ± 4,9 кг $N-N_2O$ га $^{-1}$ год $^{-1}$).

Оценка выбросов метана от осушенных органогенных почв кормовых угодий выполняется согласно формуле (19).

где:

 CH_4 _organic - выбросы метана, кг CH_4 ;

Аосуш - площадь осушенных почв рекультивированных земель, га;

 $\operatorname{Frac}_{\operatorname{\underline{ditch}}}$ - доля общей площади под осушительными каналами, не имеет размерности;

 ${\rm EF}_{_{
m land}}$ - коэффициент выбросов для участков, не занятых осушительными каналами, кг ${\rm CH}_{A}$ га $^{-1}$ год $^{-1}$;

 ${
m EF__{ditch}}$ - коэффициент выбросов для осушительных канав, кг ${
m CH_4}$ га $^{-1}$ год $^{-1}$.

Следует использовать следующие коэффициенты:

```
Frac_ditch = 0,05 CH_4 кг га<sup>-1</sup> год<sup>-1</sup>;
EF_land = 1,4 CH_{\Delta} кг га<sup>-1</sup> год<sup>-1</sup>.
EF_ditch = 43,63 CH_4 кг га<sup>-1</sup> год<sup>-1</sup>.
```

- 5. Проведение экспериментальных измерений запасов углерода в пулах биомассы и почвы на рекультивированных землях.
- 5.1. Выполнение репрезентативных измерений динамики запасов углерода в пулах биомассы и почвы рекультивированных земель предусматривает закладку постоянных пробных площадей, в пределах которых будет выполняться отбор образцов случайным образом в течение всего времени реализации проекта.
- В зависимости от общей площади территории, отведенной под проект, каждая пробная площадь должна быть от 0,5 до 1 га.
- 5.2. При выборе схемы закладки пробных площадей учитываются масштабы территории проекта и ключевые параметры окружающей среды (например, рельеф). Последний фактор служит в качестве параметра стратификации, и при выборке обеспечивается более полный пространственный учет неоднородностей территории.
- 5.3. Отбор проб надземной травянистой растительности проводится на площади 50 x 50 см в 3-5 кратной повторности в пределах каждой пробной площади. Образцы травянистой растительности высушиваются до абсолютно сухого состояния и взвешиваются.
- 5.4. Расчет запаса углерода в пуле надземной травянистой биомассы проводят путем умножения абсолютного сухого веса пробы на среднее содержание углерода, которое принимается равным 50%. Расчет запаса углерода в травянистой биомассе с учетом надземной и подземной частей проводят по формулам (20-22).

$$C_{\text{биомасса}} = C_{\text{надз.биомасса}} + C_{\text{подз.биомасса}}$$
 (20)
$$C_{\text{надз.биомасса}} = \text{Bec} * 0.04 * 0.5 (21)$$

$$C_{\text{подз.биомасса}} = [a * (C_{\text{надз.биомасса}} * 20) + b] * 0.45 / 10 (22)$$
 где:
$$C_{\text{биомасса}} - \text{запас углерода в пуле биомассы на рекультивированных земл$$

 $^{
m C}_{
m биомасса}$ - запас углерода в пуле биомассы на рекультивированных землях, тонн С га $^{-1}$.

 $C_{\text{надз биома сса}}$ - запас углерода в надземной биомассе, тонн С га $^{-1}$;

 $C_{\text{подз.биомасса}}$ - запас углерода в подземной биомассе, тонн С га $^{-1}$;

Вес - средний вес отобранных образцов травянистой биомассы с площади 50 х 50 см, г;

- 0,04 и 10 коэффициенты для перевода в единицы запаса тонн на гектар, не имеет размерности;
- 0,5 и 0,45 коэффициенты для перевода в единицы углерода массу надземной части биомассы и корней, не имеет размерности;
 - 20 пересчетный коэффициент, не имеет размерности;

- а и b пересчетные коэффициенты: при значении $^{\rm C}_{\rm Hagg, 5 KiOMacca}$ более 1,75 тонн C га $^{-1}$ () значения а и b принимаются равными 1 и 15 соответственно; при значении $^{\rm C}_{\rm Hagg, 5 KiOMacca}$ менее 1,75 тонн C га $^{-1}$ значения а и b принимаются равными 0,8 и 11, соответственно.
 - 5.5. Описание отбора и подготовки проб почв приведено в пункте 2.3 настоящего Приложения.
- 5.6. Химический анализ на общее содержание органического вещества почв, содержание углерода в органическом веществе почв принимается равным 58%. Пересчет на запас углерода почвы производится с учетом объемной массы почвы (r см $^{-3}$) по формуле (23).

$$C_{\text{почва}} = Opr%*H*O6. масса*58/100 (23)$$

где:

 $C_{ extbf{noves}a}$ - запас углерода в пуле почвы на рекультивированных землях, тонн С га $^{-1}$;

Орг% - содержание органического вещества в смешанном почвенном образце, %;

H - глубина отбора проб почвы (например, 20 - при отборе до 20 см и 30 - при отборе до 30 см и так далее), см;

 \bigcirc 6. масса - объемная масса почвы, г см $^{-3}$;

58/100 - коэффициент для перевода в единицы углерода.

5.7. Расчет эмиссии CO_2 от сжигания ископаемого топлива в рамках деятельности по проекту осуществляется по формуле (24):

$$C_{FUEL} = \sum_{k=0}^{n} Vk * EFk * (24)$$

где:

 C_{FUEL} - выбросы CO_2 от сжигания топлива, тонн;

Vk - объем сожженного топлива k;

EFk - коэффициент эмиссии CO_2 от сжигания топлива k.

Данные о коэффициентах выбросов парниковых газов по видам топлива приведены в Приложении N 2 к Методике.

В расчет включаются различные виды топлива, произведенные с использованием ископаемых энергетических ресурсов, в том числе бензин, керосин, дизельное топливо и другие.

5.8. Перевод из единиц углерода в ${\rm CO}_2$ проводится по формуле (25) путем умножения изменений запасов углерода на -44/12.

$$CO_2 = \Delta C * (-44/12)$$
 (25)

где:

$$CO_2$$
- поток CO_2 , тонн CO_2 ;

^{*} Формула и экспликация соответствуют оригиналу. - Примечание изготовителя базы данных.

∆С - изменение запасов углерода, тонн С;

44/12 - пересчетный коэффициент, не имеет размерности.

5.9. Пересчет выбросов метана в ${\rm CO}_2$ -эквивалент проводится путем умножения на значение потенциала глобального потепления 25. Пересчет выбросов закиси азота в ${\rm CO}_2$ -эквивалент проводится путем умножения на значение потенциала глобального потепления 298. Расчеты проводятся по формуле (26).

где:

 ${\rm CO}_2$ -экв. - величина выбросов или поглощения иных парниковых газов, кроме ${\rm CO}_2$, в единицах ${\rm CO}_2$ эквивалента, тонн;

ПГ - величина выброса или поглощения иного парникового газа, кроме СО₂, тонн;

ПГП - потенциал глобального потепления данного парникового газа, не имеет размерности (25 для ${
m CH_4}$; 298 для ${
m N_2O}$).

- 6. Расчет поглощений парниковых газов постоянными лесными землями.
- 6.1. Оценка изменения запасов углерода.
- 6.1.1. Оценка поглощения парниковых газов проводится для всех видов управляемых лесов, включая резервные леса, на которых осуществляются лесоклиматические проекты. Эмиссии углерода учитываются по фактическим площадям лесов, погибших в результате воздействия лесных пожаров, вредных организмов, сплошных рубок, ветровалов и иных неблагоприятных факторов.

Расчет запаса углерода в биомассе древостоев по группам возраста преобладающих пород проводится по формуле (27):

$$CP_{ij} = V_{ij} *KP_{ij}$$
 (27)

где:

 V_{ij} - объемный запас стволовой древесины насаждений группы возраста і преобладающей породы і, м 3 га $^{-1}$;

 KP_{ij} - конверсионный коэффициент для расчета запаса углерода в биомассе древостоев группы возраста і преобладающей породы j, тонн C м $^{-3}$ (таблица 24.4).

Таблица 24.4. Конверсионные коэффициенты (тонн С м $^{-3}$) для расчета запаса углерода в биомассе древостоя по объемному запасу древесины лесного насаждения

		Группа возраста					
Преобладающая порода	Зона	Молодняки I и	Средне-	Приспе-	Спелые и		

		II классов возраста	возрастные	вающие	перестойные
Сосна	1	0,469	0,363	0,339	0,353
	2	0,387	0,327	0,317	0,311
	3	0,370	0,318	0,314	0,321
Ель	1	0,495	0,414	0,414	0,395
	2	0,474	0,369	0,364	0,370
	3	0,427	0,347	0,342	0,342
Пихта	1-3	0,374	0,282	0,270	0,270
Лиственница	1	0,515	0,497	0,483	0,466
	2	0,499	0,462	0,458	0,448
	3	0,499	0,372	0,352	0,380
Кедр	1-3	0,424	0,337	0,331	0,337
Дуб высокоствольный	1-3	0,579	0,480	0,481	0,493
Дуб низкоствольный	1-3	0,724	0,535	0,501	0,486
Каменная береза	1-3	0,795	0,541	0,563	0,636
Прочие твердолиственные	1-3	0,583	0,501	0,508	0,520
Береза	1	0,564	0,485	0,452	0,442
	2	0,504	0,423	0,398	0,396
	3	0,470	0,401	0,382	0,379
Осина, тополь	1-3	0,430	0,364	0,340	0,328
Прочие мягколиственные	1-3	0,406	0,363	0,330	0,339
Кедровый стланик	1-3	0,700	0,766	0,833	0,999

Расчет абсорбции углерода пулом биомассы проводится по формулам 28-30:

$$\begin{split} & \text{MCP}_{ij} = \text{CP}_{ij} / S_{ij} \, (28) \\ & \text{MAbP}_{ij} = (\text{MCP}_{ij} - \text{MCP}_{i-1j}) / \, (\text{TI}_{i-1j} + \text{TI}_{ij}) + (\text{MCP}_{i+1j} - \text{MCP}_{ij}) / \, (\text{TI}_{ij} + \text{TI}_{i+j}) \, (29) \\ & \text{AbP}_{ij} = S_{ij} \, * \text{MAbP}_{ij} \, (30) \end{split}$$

где:

 MCP_{ij} - средний запас углерода биомассы насаждений возрастной группы і преобладающей породы j, тонн C га $^{-1}$;

- ${}^{\mbox{CP}}_{ij}$ запас углерода биомассы насаждений возрастной группы і преобладающей породы j, тонн C;
 - \mathbb{S}_{ij} площадь насаждений возрастной группы і преобладающей породы j, га;
- ${
 m MAbP}_{ij}$ средняя годичная абсорбция углерода пулом биомассы насаждений возрастной группы і преобладающей породы j, тонн С га $^{-1}$ год $^{-1}$;
- MCP_{i-1j} средний запас углерода биомассы насаждений возрастной группы i-1 (предшествующая возрастной группе i) преобладающей породы j, тонн C га $^{-1}$;
 - TI_{ij} временной интервал возрастной группы і преобладающей породы j, лет (таблица 24.5);
 - $\mathrm{TI}_{i\text{-}1i}$ временной интервал возрастной группы i-1 преобладающей породы j, лет (таблица 24.5);
- MCP_{i+1j} средний запас углерода биомассы насаждений возрастной группы i+1 (следующая за возрастной группой i) преобладающей породы j, тонн C га $^{-1}$;
- TI_{i+j} временной интервал возрастной группы i+1 преобладающей породы j, лет (таблица 24.5);
- AbP_{ij} годичная абсорбция углерода пулом биомассы насаждений возрастной группы і преобладающей породы j, тонн C год $^{-1}$.

Таблица 24.5. Временные интервалы возрастных групп насаждений преобладающих пород

Преобладающая	Зона		Временной интервал возрастной группы, лет						
порода		Молодняк и 1 класса возраста	Молодняк и 2 класса возраста	Средне- возраст- ные	Приспе- вающие	Спелые	Пере- стойные		
Сосна	1-2	20	20	40	20	40	40		
	3	20	20	20	20	40	40		
Ель	1-2	20	20	40	20	40	40		
	3	20	20	20	20	40	40		
Пихта	1-3	20	20	20	20	40	40		
Лиственница	1-2	20	20	60	20	40	40		
	3	20	20	40	20	40	40		
Кедр	1-3	40	40	120	40	80	80		
Дуб	1-2	20	20	40	20	40	40		
высокоствольный	3	20	20	20	20	40	40		
Дуб низкоствольный	1-3	10	10	30	10	20	20		

Прочие	1-2	20	20	40	20	40	40
твердолиственные	3	20	20	20	20	40	40
Береза	1-3	10	10	30	10	20	20
Осина	1-3	10	10	20	10	20	20
Прочие мягколиственные	1-3	10	10	20	10	20	20
Кедровый стланик	1-3	20	20	60	20	40	40
Прочие кустарники	1-3	5	5	10	5	10	10

6.1.2. Оценка средних годичных темпов деструктивных нарушений в лесах проводится по формулам (31, 32).

```
ASF = SB/TRB (31)
```

где:

ASF - годичная площадь деструктивных лесных пожаров, га год $^{-1}$;

SB - площадь гарей, га;

TRB - время зарастания гарей, лет (таблица 24.6).

ASH = SC/TRC (32)

где:

ASH - годичная площадь сплошных рубок, га год $^{-1}$;

SC - площадь вырубок, га;

TRC - время зарастания вырубок, лет (таблица 24.6).

6.1.3. Оценка потерь углерода в пуле биомассы.

Расчет потерь пула биомассы при сплошных рубках проводится по формуле (33):

LsPH = ASH CPm/Sm (33)

где:

LsPH - годичные потери углерода пулом биомассы покрытых лесом земель при сплошных рубках, тонн C год $^{-1}$;

ASH - годичная площадь сплошных рубок, га год $^{-1}$;

СРт - суммарный запас углерода биомассы спелых лесов, тонн С;

Sm - суммарная площадь спелых лесов, га.

Поскольку пожары могут охватывать лесные насаждения любого возраста, для оценки потерь пула биомассы используются средние значения по всем лесам. Расчет потерь пула биомассы при пожарах проводится по формуле (34):

LsPF = ASF CPa/Sa (34)

где:

LsPF - годичные потери углерода пулом биомассы покрытых лесом земель при пожарах, тонн С rod^{-1} ;

ASF - годичная площадь деструктивных лесных пожаров, га год $^{-1}$;

СРа - суммарный запас углерода биомассы на покрытых лесом землях, тонн С;

Sa - суммарная площадь покрытых лесом земель, га.

Таблица 24.6. Времена зарастания вырубок и гарей по субъектам Российской Федерации

Субъект Российской Федерации	Время зарас	тания, лет
	вырубки	гари
Республика Адыгея (Адыгея)	3	7
Республика Алтай	6	12
Республика Башкортостан	5	10
Республика Бурятия	6	13
Республика Дагестан	5	10
Республика Ингушетия	7	13
Кабардино-Балкарская Республика	4	8
Республика Калмыкия	3	5
Карачаево-Черкесская Республика	4	8
Республика Карелия	7	14
Республика Коми	6	13
Республика Крым	3	7
Республика Марий Эл	5	10
Республика Мордовия	4	9
Республика Саха (Якутия)	6	13
Республика Северная Осетия - Алания	4	7
Республика Татарстан (Татарстан)	4	9
Республика Тыва	2	5
Удмуртская Республика	5	10
Республика Хакасия	2	5
Чеченская Республика	7	13

Чувашская Республика - Чувашия 4 Алтайский край 6 Забайкальский край 8 Камчатский край 3 Краснодарский край 6 Пермский край 7 Приморский край 2 Ставропольский край 3 Хабаровский край 6 Амурская область 5 Архангельская область 6 Астраханская область 3 Белгородская область 4 Брянская область 4 Вологодская область 4 Вологодская область 6 Воронежская область 6 Иркутская область 5 Калининградская область 4 Камеровская область 4 Кировская область 6 Кировская область 6 Курганская область 5 Курганская область 5 Курская область 5 Курская область 5 Курская область 5	
Забайкальский край 6 Камчатский край 8 Краснодарский край 3 Красноярский край 7 Приморский край 2 Ставропольский край 3 Хабаровский край 6 Амурская область 5 Архангельская область 6 Астраханская область 3 Белгородская область 4 Владимирская область 4 Вологодская область 3 Воронежская область 6 Иркутская область 5 Иркутская область 6 Калининградская область 4 Калужская область 4 Камеровская область 6 Кировская область 6 Костромская область 5 Курганская область 5 Курганская область 5 Курганская область 5	9
Камчатский край 3 Краснодарский край 6 Пермский край 7 Приморский край 2 Ставропольский край 3 Хабаровский край 6 Амурская область 5 Архангельская область 6 Астраханская область 3 Белгородская область 4 Брянская область 4 Волгоградская область 4 Вологодская область 6 Ивановская область 5 Иркутская область 5 Калининградская область 4 Калужская область 4 Кемеровская область 6 Кировская область 6 Костромская область 5 Курганская область 5 Курганская область 5 Курганская область 5	12
Краснодарский край 3 Красноярский край 6 Пермский край 2 Ставропольский край 3 Хабаровский край 6 Амурская область 5 Архангельская область 3 Белгородская область 4 Брянская область 4 Вологорадская область 4 Вологорадская область 3 Вологораская область 6 Воронежская область 4 Ивановская область 5 Иркутская область 6 Калужская область 4 Калужская область 4 Кировская область 6 Кировская область 6 Курганская область 5 Курганская область 5	11
Красноярский край 7 Пермский край 2 Ставропольский край 3 Хабаровский край 6 Амурская область 5 Архангельская область 6 Астраханская область 3 Белгородская область 4 Брянская область 4 Волгоградская область 3 Вологодская область 6 Воронежская область 6 Ивановская область 5 Иркутская область 4 Калининградская область 4 Калужская область 4 Кировская область 6 Кировская область 6 Курганская область 5 Курганская область 5	17
Пермский край 7 Приморский край 2 Ставропольский край 3 Хабаровский край 6 Амурская область 5 Архангельская область 6 Астраханская область 4 Белгородская область 4 Владимирская область 4 Вологорадская область 3 Вологодская область 6 Воронежская область 4 Ивановская область 5 Иркутская область 6 Калужская область 4 Калужская область 6 Кировская область 6 Костромская область 5 Курганская область 5 Курганская область 5	7
Приморский край 2 Ставропольский край 3 Хабаровский край 6 Амурская область 5 Архангельская область 6 Астраханская область 4 Белгородская область 4 Брянская область 4 Вологорадская область 3 Вологодская область 6 Воронежская область 4 Ивановская область 5 Иркутская область 6 Калининградская область 4 Калужская область 4 Кировская область 6 Кировская область 6 Костромская область 5 Курганская область 5 Курганская область 5	13
Ставропольский край 3 Хабаровский край 6 Амурская область 5 Архангельская область 6 Астраханская область 3 Белгородская область 4 Брянская область 4 Владимирская область 4 Вологодская область 6 Воронежская область 4 Ивановская область 5 Иркутская область 6 Калининградская область 4 Капужская область 4 Кировская область 6 Кировская область 6 Костромская область 5 Курганская область 5 Курганская область 5	13
Хабаровский край 6 Амурская область 5 Архангельская область 6 Астраханская область 3 Белгородская область 4 Брянская область 4 Владимирская область 4 Вологодская область 6 Воронежская область 4 Ивановская область 5 Иркутская область 6 Калининградская область 4 Калужская область 4 Кемеровская область 6 Кировская область 6 Костромская область 5 Курганская область 5	3
Амурская область 5 Архангельская область 6 Астраханская область 3 Белгородская область 4 Брянская область 4 Владимирская область 4 Вологодская область 3 Воронежская область 4 Ивановская область 5 Иркутская область 6 Калининградская область 4 Кемеровская область 4 Кировская область 6 Кировская область 6 Костромская область 5 Курганская область 5 Курганская область 5	6
Архангельская область 6 Астраханская область 3 Белгородская область 4 Брянская область 4 Владимирская область 3 Вологодская область 6 Воронежская область 4 Ивановская область 5 Иркутская область 6 Калининградская область 4 Калужская область 4 Кемеровская область 6 Кировская область 6 Костромская область 5 Курганская область 5 Курганская область 5	13
Астраханская область 3 Белгородская область 4 Брянская область 4 Владимирская область 4 Вологодская область 6 Воронежская область 4 Ивановская область 5 Иркутская область 6 Калининградская область 4 Калужская область 4 Кемеровская область 6 Кировская область 6 Костромская область 5 Курганская область 5 Курганская область 5	10
Белгородская область 4 Брянская область 4 Владимирская область 4 Волгоградская область 6 Воронежская область 4 Ивановская область 5 Иркутская область 6 Калининградская область 4 Калужская область 4 Кемеровская область 6 Кировская область 6 Костромская область 5 Курганская область 5	13
Брянская область 4 Владимирская область 3 Вологодская область 6 Воронежская область 4 Ивановская область 5 Иркутская область 6 Калининградская область 4 Кемеровская область 4 Кировская область 6 Костромская область 5 Курганская область 5	5
Владимирская область 4 Волгоградская область 6 Воронежская область 4 Ивановская область 5 Иркутская область 6 Калининградская область 4 Калужская область 4 Кемеровская область 6 Кировская область 6 Костромская область 5 Курганская область 5	8
Волгоградская область 3 Вологодская область 6 Воронежская область 4 Ивановская область 5 Иркутская область 6 Калининградская область 4 Калужская область 4 Кемеровская область 6 Кировская область 6 Костромская область 5 Курганская область 5	9
Вологодская область 6 Воронежская область 4 Ивановская область 5 Иркутская область 6 Калининградская область 4 Калужская область 4 Кемеровская область 6 Кировская область 6 Костромская область 5 Курганская область 5	9
Воронежская область 4 Ивановская область 5 Иркутская область 6 Калининградская область 4 Калужская область 4 Кемеровская область 6 Кировская область 6 Костромская область 5 Курганская область 5	5
Ивановская область 5 Иркутская область 6 Калининградская область 4 Калужская область 4 Кемеровская область 6 Кировская область 6 Костромская область 5 Курганская область 5	11
Иркутская область 6 Калининградская область 4 Калужская область 4 Кемеровская область 6 Кировская область 6 Костромская область 5 Курганская область 5	8
Калининградская область 4 Калужская область 4 Кемеровская область 6 Кировская область 6 Костромская область 5 Курганская область 5	9
Калужская область 4 Кемеровская область 6 Кировская область 6 Костромская область 5 Курганская область 5	11
Кемеровская область 6 Кировская область 6 Костромская область 5 Курганская область 5	8
Кировская область 6 Костромская область 5 Курганская область 5	9
Костромская область 5 Курганская область 5	13
Курганская область 5	11
	10
Курская область 5	10
1	10
Ленинградская область 6	11
Липецкая область 4	9
Магаданская область 7	14

Московская область	5	10
Мурманская область	9	17
Нижегородская область	4	9
Новгородская область	6	11
Новосибирская область	5	10
Омская область	5	11
Оренбургская область	4	7
Орловская область	3	6
Пензенская область	4	8
Псковская область	5	11
Ростовская область	2	5
Рязанская область	5	9
Самарская область	4	8
Саратовская область	3	6
Сахалинская область	8	15
Свердловская область	6	11
Смоленская область	4	9
Тамбовская область	3	7
Тверская область	5	9
Томская область	6	11
Тульская область	4	8
Тюменская область	7	13
Ульяновская область	4	8
Челябинская область	5	9
Ярославская область	5	10
г.Москва	5	10
г.Санкт-Петербург	6	11
г.Севастополь	3	7
Еврейская автономная область	6	13
Ненецкий автономный округ	6	13
Ханты-Мансийский автономный округ - Югра	6	13
	1	ii

Чукотский автономный округ	7	14
Ямало-Ненецкий автономный округ	6	13

6.1.4. Годичный бюджет по пулу углерода биомассы рассчитывается для покрытых лесом земель по разности абсорбции и потерь по формуле (35).

$$BP = AbP - LsPH - LsPF (35)$$

где:

BP - годичный бюджет углерода по пулу биомассы покрытых лесом земель, тонн С год $^{-1}$;

AbP - годичная абсорбция углерода пулом биомассы покрытых лесом земель, тонн С год $^{-1}$;

LsPH - годичные потери углерода пулом биомассы покрытых лесом земель при сплошных рубках, тонн С год $^{-1}$;

LsPF - годичные потери углерода пулом биомассы покрытых лесом земель при деструктивных лесных пожарах, тонн С rod^{-1} .

6.1.5. Расчет запаса углерода в мертвой древесине по группам возраста преобладающих пород проводится по формуле (36):

$$CD_{ij} = V_{ij} * KD_{ij}$$
 (36)

где:

 ${
m CD}_{ij}$ - запас углерода в мертвой древесине насаждений группы возраста і преобладающей породы j, тонн C;

 \mathbb{V}_{ij} - объемный запас стволовой древесины насаждений группы возраста і преобладающей породы j, м 3 ;

 ${
m KD}_{ij}$ - конверсионный коэффициент для расчета запаса углерода в мертвой насаждений* группы возраста і преобладающей породы j, тонн С м $^{-3}$ (таблица 24.7.).

6.1.6. Расчет абсорбции углерода пулом мертвой древесины аналогичен таковому для пула биомассы и проводится по формулам (37-39).

$$MCD_{ij} = CD_{ij} / S_{ij} (37)$$

$${\rm MAbD}_{ij} = ({\rm MCD}_{ij} - {\rm MCD}_{i-1j})/({\rm TI}_{i-1j} + {\rm TI}_{ij}) + ({\rm MCD}_{i+1j} - {\rm MCD}_{ij})/({\rm TI}_{ij} + {\rm TI}_{i+j}) \, (38)$$

$$AbD_{ij} = S_{ij} * MAbD_{ij}$$
 (39)

где:

 ${
m MCD}_{ij}$ - средний запас углерода мертвой древесины насаждений возрастной группы і преобладающей породы і, тонн С га $^{-1}$:

^{*} Текст соответствует оригиналу. - Примечание изготовителя базы данных.

- ${}^{\rm CD}{}_{ij}$ запас углерода мертвой древесины насаждений возрастной группы і преобладающей породы j, тонн C;
 - \mathbb{S}_{ii} площадь насаждений возрастной группы і преобладающей породы j, га;
- ${
 m MAbD}_{ij}$ средняя годичная абсорбция углерода пулом мертвой древесины насаждений возрастной группы і преобладающей породы į, тонн C га $^{-1}$ год $^{-1}$;
- ${
 m MCD}_{i\text{--}1j}$ средний запас углерода мертвой древесины насаждений возрастной группы i-1 (предшествующая возрастной группе i) преобладающей породы j, тонн C га $^{-1}$;
 - Π_{ii} временной интервал возрастной группы і преобладающей породы j, лет;
 - Π_{i-1i} временной интервал возрастной группы i-1 преобладающей породы j, лет;
- ${
 m MCD}_{i+lj}$ средний запас углерода мертвой древесины насаждений возрастной группы i+1 (следующая за возрастной группой i) преобладающей породы j, тонн C га $^{-1}$;
 - TI_{i+j} временной интервал возрастной группы i+1 преобладающей породы j, лет;
- ${
 m AbD}_{ij}$ годичная абсорбция углерода пулом мертвой древесины насаждений возрастной группы і преобладающей породы į, тонн С год $^{-1}$.

Таблица 24.7. Конверсионные коэффициенты (тонн С м $^{-3}$) для расчета запаса углерода в мертвой древесине по объемному запасу древесины лесного насаждения

Преобладаю-	Макро-	Зона			Группа в	возраста		
щая порода	регион							
Сосна	1	1	0,0797	0,1075	0,1095	0,1073	0,1196	0,0592
	1	2	0,0685	0,0966	0,1126	0,1228	0,1202	0,0780
	1	3	0,0579	0,0808	0,0962	0,1119	0,1073	0,0973
	2	1	0,0808	0,1187	0,1210	0,1147	0,0959	0,0698
	2	2	0,0755	0,1077	0,1322	0,1167	0,1033	0,0687
	2	3	0,0726	0,0974	0,1240	0,1379	0,1291	0,0829
	3	1	0,0773	0,0986	0,1099	0,1015	0,0797	0,0526
	3	2	0,0613	0,0868	0,1073	0,1128	0,0972	0,0566
	3	3	0,0618	0,0886	0,1026	0,1053	0,0977	0,0716
	4	1	0,0740	0,0982	0,1012	0,0981	0,0824	0,0491
	4	2	0,0616	0,0928	0,1041	0,0960	0,0708	0,0520
	4	3	0,0605	0,0875	0,1437	0,1179	0,0989	0,0524

Ель	1	1	0,0332	0,0993	0,1530	0,1513	0,1288	0,0664
	1	2	0,0291	0,0859	0,1473	0,1567	0,1280	0,0759
	1	3	0,0318	0,0916	0,1115	0,1445	0,1362	0,0995
	2	1	0,0340	0,1057	0,1625	0,1808	0,0885	0,0909
	2	2	0,0306	0,0927	0,1479	0,1604	0,0943	0,0748
	2	3	0,0361	0,1104	0,1184	0,1492	0,1008	0,1231
	3	1	0,0322	0,0918	0,1471	0,1271	0,0372	0,0644
	3	2	0,0281	0,0852	0,1431	0,1691	0,0415	0,0702
	3	3	0,0358	0,0994	0,1158	0,1378	0,0726	0,0883
	4	1	0,0324	0,0933	0,1480	0,1582	0,0298	0,0586
	4	2	0,0284	0,0830	0,1387	0,1517	0,0569	0,0665
	4	3	0,0357	0,1029	0,1113	0,1463	0,0734	0,0779
Пихта	1	1	0,0320	0,1023	0,0914	0,1174	0,1016	0,0528
	1	2	0,0270	0,0778	0,0983	0,1246	0,1110	0,0658
	1	3	0,0246	0,0660	0,0831	0,1050	0,0684	0,0533
	2	1	0,0305	0,0919	0,0771	0,1241	0,0210	0,0516
	2	2	0,0284	0,0831	0,0908	0,0869	0,0103	0,0543
	2	3	0,0258	0,0755	0,0971	0,1151	0,0725	0,0685
	3	1	0,0305	0,0919	0,0771	0,1241	0,0303	0,0521
	3	2	0,0253	0,0731	0,0874	0,1062	0,0594	0,0633
	3	3	0,0248	0,0756	0,0821	0,1059	0,0695	0,0623
	4	1	0,0305	0,0800	0,1004	0,1174	0,0699	0,0587
	4	2	0,0270	0,0803	0,0918	0,1292	0,1123	0,0876
	4	3	0,0265	0,0735	0,0976	0,1206	0,0884	0,0601
Лиственница	1	1	0,0290	0,0744	0,1108	0,1159	0,1140	0,0689
	1	2	0,0265	0,0451	0,1181	0,1398	0,1178	0,0891
	1	3	0,0282	0,0397	0,0852	0,1211	0,1231	0,0926
	2	1	0,0279	0,0627	0,1260	0,1397	0,0650	0,0961
	2	2	0,0246	0,0410	0,1137	0,1211	0,0437	0,0675
	2	3	0,0227	0,0395	0,0770	0,0970	0,0428	0,0588
	3	1	0,0263	0,0627	0,1010	0,0935	0,0439	0,0602
•	•		•	-	•	•	•	•

	3	2	0,0232	0,0444	0,1159	0,1341	0,0494	0,0686
	3	3	0,0249	0,0438	0,0822	0,0955	0,0617	0,0718
	4	1	0,0265	0,0568	0,1069	0,0946	0,0501	0,0709
	4	2	0,0225	0,0424	0,0955	0,1001	0,0461	0,0579
	4	3	0,0225	0,0389	0,0849	0,1052	0,0582	0,0738
Кедр	1	1	0,0000	0,0937	0,0318	0,0278	0,0268	0,0198
	1	2	0,1532	0,1369	0,0515	0,0414	0,0341	0,0335
	1	3	0,1631	0,1189	0,0389	0,0388	0,0339	0,0287
	2	1	0,1545	0,0937	0,0322	0,0213	0,0205	0,0256
	2	2	0,1589	0,1638	0,0599	0,0473	0,0385	0,0328
	2	3	0,1548	0,1189	0,0485	0,0388	0,0339	0,0287
	3	1	0,1449	0,0693	0,0269	0,0177	0,0132	0,0193
	3	2	0,1544	0,1299	0,0709	0,0539	0,0278	0,0367
	3	3	0,1434	0,0812	0,0336	0,0209	0,0239	0,0276
	4	1	0,1486	0,0850	0,0305	0,0213	0,0183	0,0215
	4	2	0,1479	0,1351	0,0659	0,0324	0,0268	0,0269
	4	3	0,1492	0,1581	0,0497	0,0305	0,0274	0,0362
Дуб	1	2	0,0734	0,0846	0,0613	0,0765	0,0648	0,0612
высоко-	1	3	0,0734	0,0846	0,0639	0,0725	0,0648	0,0612
ствольный	4	2	0,0691	0,0935	0,0786	0,0755	0,0473	0,0457
	4	3	0,0640	0,0719	0,0701	0,0665	0,0425	0,0438
Дуб	1	2	0,0383	0,0618	0,1025	0,1750	0,0900	0,1336
низко-	1	3	0,0383	0,0618	0,0856	0,1071	0,1128	0,1292
ствольный	4	2	0,0679	0,1064	0,1698	0,2017	0,1436	0,1246
	4	3	0,0426	0,0621	0,1414	0,1797	0,1278	0,1300
Каменная	4	1	0,0581	0,1140	0,1154	0,1187	0,0703	0,0984
береза	4	2	0,0666	0,0956	0,1195	0,1204	0,0526	0,0782
	4	3	0,0726	0,0952	0,1212	0,1107	0,0375	0,0736
Прочие	1	2	0,0223	0,1045	0,1001	0,0733	0,0135	0,0342
твердолист-	1	3	0,0912	0,1141	0,0860	0,0733	0,0279	0,0342
венные	2	3	0,0199	0,0801	0,0564	0,0781	0,0178	0,0158

	4	2	0,0199	0,0763	0,0722	0,0519	0,0211	0,0158
	4	3	0,0211	0,0795	0,0703	0,0550	0,0157	0,0141
Береза	1	1	0,0240	0,0406	0,0741	0,0633	0,0629	0,0562
	1	2	0,0256	0,0371	0,0726	0,0678	0,0590	0,0539
	1	3	0,0187	0,0300	0,0650	0,0717	0,0646	0,0542
	2	1	0,0241	0,0480	0,0778	0,0655	0,0464	0,0601
	2	2	0,0253	0,0377	0,0717	0,0666	0,0105	0,0376
	2	3	0,0247	0,0360	0,0688	0,0686	0,0218	0,0426
	3	1	0,0242	0,0540	0,0735	0,0776	0,0293	0,0550
	3	2	0,0245	0,0394	0,0725	0,0613	0,0290	0,0453
	3	3	0,0212	0,0337	0,0657	0,0626	0,0361	0,0432
	4	1	0,0241	0,0460	0,0718	0,0709	0,0465	0,0584
	4	2	0,0242	0,0385	0,0687	0,0597	0,0416	0,0447
	4	3	0,0246	0,0404	0,0640	0,0648	0,0390	0,0407
Осина	1	1	0,0249	0,0554	0,0738	0,0610	0,0372	0,0291
	1	2	0,0223	0,0590	0,0846	0,0735	0,0459	0,0320
	1	3	0,0225	0,0585	0,0830	0,0801	0,0530	0,0346
	2	1	0,0225	0,0494	0,0767	0,0431	0,0053	0,0248
	2	2	0,0225	0,0612	0,0794	0,0613	0,0006	0,0297
	2	3	0,0223	0,0586	0,0824	0,0778	0,0163	0,0305
	3	1	0,0215	0,0611	0,0656	0,0648	0,0048	0,0201
	3	2	0,0216	0,0569	0,0700	0,0609	0,0149	0,0290
	3	3	0,0219	0,0566	0,0734	0,0682	0,0209	0,0322
	4	1	0,0216	0,0557	0,0811	0,0539	0,0181	0,0246
	4	2	0,0218	0,0600	0,0700	0,0627	0,0267	0,0285
	4	3	0,0218	0,0591	0,0735	0,0719	0,0279	0,0294
Прочие	1	1	0,0230	0,0562	0,0864	0,0739	0,0661	0,0315
мягколист-	1	2	0,0128	0,0256	0,0403	0,0617	0,0596	0,0589
венные	1	3	0,0153	0,0390	0,0478	0,0690	0,0578	0,0441
	2	1	0,0230	0,0555	0,0514	0,0681	0,0083	0,0200
	2	2	0,0230	0,0572	0,0648	0,0579	0,0404	0,0411
•								

	2	3	0,0230	0,0670	0,0506	0,0580	0,0273	0,0335
	3	2	0,0226	0,0592	0,0764	0,0629	0,0127	0,0312
	3	3	0,0262	0,0754	0,0784	0,0595	0,0158	0,0246
	4	1	0,0254	0,0712	0,0776	0,0762	0,0403	0,0296
	4	2	0,0249	0,0706	0,0815	0,0685	0,0305	0,0319
	4	3	0,0169	0,0411	0,0534	0,0459	0,0301	0,0392
Кедровый	3	2	0,0506	0,1026	0,1813	0,2206	0,2870	0,1958
стланик	4	1	0,0490	0,1112	0,1695	0,2067	0,2112	0,2299
	4	2	0,0495	0,0997	0,1718	0,1953	0,2299	0,2667
	4	3	0,0495	0,0609	0,1741	0,2027	0,2737	0,2869
Прочие	1	1	0,0143	0,0396	0,0973	0,0118	0,0147	0,0254
кустарники	1	3	0,0174	0,0570	0,0605	0,0545	0,0215	0,0196
	2	1	0,0143	0,0396	0,0973	0,0677	0,0489	0,0254
	2	2	0,0180	0,0538	0,0718	0,0396	0,0091	0,0128
	2	3	0,0177	0,0534	0,0443	0,1089	0,0021	0,0184
	3	1	0,0143	0,0367	0,1227	0,0611	0,0239	0,0253
	3	2	0,0180	0,0538	0,0718	0,0396	0,0381	0,0299
	3	3	0,0143	0,0380	0,0593	0,0395	0,0294	0,0206
	4	1	0,0174	0,0543	0,0687	0,0519	0,0425	0,0338
	4	2	0,0172	0,0453	0,0444	0,1133	0,0601	0,0254

Макрорегионы, указанные в таблице 24.7: 1 - Европейско-Уральская часть, 2 - Западная Сибирь, 3 - Восточная Сибирь, 4 - Дальний Восток (только для целей настоящей Методики).

Зоны, указанные в таблице 24.7: 1 - северная тайга, 2 - средняя тайга, 3 - южная тайга и более южные климатические зоны (только для целей настоящей Методики).

6.1.7. Расчет годичных потерь углерода пулом мертвой древесины проводится по формулам (40-41):

$$LsDH = ASH *CD_m / S_m$$
 (40)

где:

LsDH - годичные потери углерода пулом мертвой древесины покрытых лесом земель при сплошных рубках, тонн C год $^{-1}$;

ASH - годичная площадь сплошных рубок, га год $^{-1}$;

 ${\rm CD}_{\mathfrak m}$ - суммарный запас углерода мертвой древесины спелых лесов, тонн C;

 $\mathbb{S}_{\mathrm{m}}\,$ - суммарная площадь спелых лесов, га.

$$LsDF = ASF *CD_a / S_a$$
 (41)

где:

LsDF - годичные потери углерода пулом мертвой древесины покрытых лесом земель при пожарах, тонн С год $^{-1}$;

ASF - годичная площадь деструктивных лесных пожаров, га год $^{-1}$;

 ${
m CD}_{
m a}$ - суммарный запас углерода мертвой древесины на покрытых лесом землях, тонн C;

🛚 🖰 - суммарная площадь покрытых лесом земель, га.

6.1.8. Расчет бюджета углерода по пулу мертвой древесины. Годичный бюджет по пулу углерода мертвой древесины рассчитывается для покрытых лесом земель по разности абсорбции и потерь по формуле (42).

где:

BD - годичный бюджет углерода по пулу мертвой древесины покрытых лесом земель, тонн C rog^{-1} ;

AbD - годичная абсорбция углерода пулом мертвой древесины покрытых лесом земель, тонн C rog^{-1} :

LsDH - годичные потери углерода пулом мертвой древесины покрытых лесом земель при сплошных рубках, тонн C год $^{-1}$;

LsDF - годичные потери углерода пулом мертвой древесины покрытых лесом земель при деструктивных лесных пожарах, тонн С $\operatorname{год}^{-1}$.

6.1.9. Расчет запаса углерода в подстилке насаждений преобладающих пород в пределах субъекта Российской Федерации проводится по формуле (43):

$$CL_{ij} = S_{ij} * KL_{ij}$$
 (43)

где:

 $^{\text{CL}}{}_{j}$ - запас углерода в подстилке насаждений группы возраста і преобладающей породы j, тонн C;

 \mathbb{S}_i - площадь насаждений группы возраста і преобладающей породы j, га;

 $^{\mathrm{KL}}$ ј - средний запас углерода в подстилке насаждений группы возраста і преобладающей породы ј, тонн С га $^{-1}$ (таблицы 24.8-25).

Таблица 24.8. Средние значения запаса углерода подстилки (тонн C га $^{-1}$) в молодняках 1 класса возраста преобладающих древесных пород

Преобладающая	Зона		Макро	регион	
порода		1	2	3	4
Сосна	1	11,4	2,6	7,0	1,7
	2	14,2	20,0	4,3	4,3
	3	7,4	6,4	5,5	5,5
Ель	1	13,0	12,7	12,7	12,7
	2	8,8	8,8	8,8	7,7
	3	9,0	7,4	8,2	5,4
Пихта	1	3,6	3,6	3,6	3,6
	2	3,6	3,6	3,6	3,6
	3	5,1	5,1	5,1	5,1
Лиственница	1	13,7	13,7	10,6	4,9
	2	6,0	6,0	6,0	6,0
	3	4,5	4,5	4,5	4,5
Кедр	1	5,5	5,5	5,5	1,8
	2	7,1	7,1	7,1	7,1
	3	2,8	2,8	2,8	3,9
Твердолиственные	1	4,5	4,5	4,5	3,9
	2	4,5	4,5	4,5	3,9
	3	4,5	4,5	4,5	3,9
Береза	1	14,7	2,7	2,7	2,7
	2	10,1	2,4	2,4	2,4
	3	4,6	4,6	2,1	4,8
Осина	1	7,6	7,6	7,6	7,6
	2	7,6	7,6	7,6	7,6
	3	3,6	3,6	1,9	1,9
Прочие мягколиственные	1	5,0	5,0	5,0	5,0
	2	5,0	5,0	5,0	5,0
	3	5,0	5,0	5,0	5,0
Кедровый стланик	1	1,6	1,6	1,6	1,6
	2	1,6	1,6	1,6	1,6

3	1,6	1,6	1,6	1,6

Зоны, указанные в таблице 24.8 1 - северная тайга, 2 - средняя тайга, 3 - южная тайга и более южные климатические зоны (только для целей настоящей Методики).

Макрорегионы, указанные в таблице 24.8 1 - Европейско-Уральская часть, 2 - Западная Сибирь, 3 - Восточная Сибирь, 4 - Дальний Восток (только для целей настоящей Методики).

Таблица 24.9. Средние значения запаса углерода подстилки (тонн С га⁻¹) в молодняках 2 класса возраста преобладающих древесных пород

Преобладающая	Зона		Макро	регион	
порода		1	2	3	4
Сосна	1	13,8	3,2	8,5	2,1
	2	17,2	24,2	5,2	5,2
	3	9,0	7,7	6,6	6,6
Ель	1	15,7	15,4	15,4	15,4
	2	10,6	10,6	10,6	9,4
	3	10,9	8,9	9,9	6,5
Пихта	1	4,4	4,4	4,4	4,4
	2	4,4	4,4	4,4	4,4
	3	6,2	6,2	6,2	6,2
Лиственница	1	16,5	16,5	12,8	5,9
	2	7,3	7,3	7,3	7,3
	3	5,5	5,5	5,5	5,5
Кедр	1	6,7	6,7	6,7	2,1
	2	8,6	8,6	8,6	8,6
	3	3,4	3,4	3,4	4,8
Твердолиственные	1	5,4	5,4	5,4	4,7
	2	5,4	5,4	5,4	4,7
	3	5,4	5,4	5,4	4,7
Береза	1	18,1	3,4	3,4	3,4
	2	12,4	3,0	3,0	3,0
	3	5,6	5,6	2,6	5,9
Осина	1	9,4	9,4	9,4	9,4
	2	9,4	9,4	9,4	9,4

	3	4,4	4,4	2,4	2,4
Прочие мягколиственные	1	6,1	6,1	6,1	6,1
	2	6,1	6,1	6,1	6,1
	3	6,1	6,1	6,1	6,1
Кедровый стланик	1	2,0	2,0	2,0	2,0
	2	2,0	2,0	2,0	2,0
	3	2,0	2,0	2,0	2,0

Зоны, указанные в таблице 24.9 1 - северная тайга, 2 - средняя тайга, 3 - южная тайга и более южные климатические зоны (только для целей настоящей Методики).

Макрорегионы, указанные в таблице 24.9 1 - Европейско-Уральская часть, 2 - Западная Сибирь, 3 - Восточная Сибирь, 4 - Дальний Восток (только для целей настоящей Методики).

Таблица 25. Средние значения запаса углерода подстилки (тонн C га⁻¹) в средневозрастных и более старших группах возраста преобладающих древесных пород

Преобладающая	Зона		Макрор	регион	
порода		1	2	3	4
Сосна	1	13,8	3,2	8,5	2,1
	2	17,2	24,2	5,2	5,2
	3	9,0	7,7	6,6	6,6
Ель	1	15,7	15,4	15,4	15,4
	2	10,6	10,6	10,6	9,4
	3	10,9	8,9	9,9	6,5
Пихта	1	4,4	4,4	4,4	4,4
	2	4,4	4,4	4,4	4,4
	3	6,2	6,2	6,2	6,2
Лиственница	1	16,5	16,5	12,8	5,9
	2	7,3	7,3	7,3	7,3
	3	5,5	5,5	5,5	5,5
Кедр	1	6,7	6,7	6,7	2,1
	2	8,6	8,6	8,6	8,6
	3	3,4	3,4	3,4	4,8
Твердолиственные	1	5,4	5,4	5,4	4,7
	2	5,4	5,4	5,4	4,7

	3	5,4	5,4	5,4	4,7
Береза	1	19,8	3,7	3,7	3,7
	2	13,6	3,3	3,3	3,3
	3	6,2	6,2	2,9	6,5
Осина	1	10,3	10,3	10,3	10,3
	2	10,3	10,3	10,3	10,3
	3	4,9	4,9	2,6	2,6
Прочие мягколиственные	1	6,7	6,7	6,7	6,7
	2	6,7	6,7	6,7	6,7
	3	6,7	6,7	6,7	6,7
Кедровый стланик	1	2,0	2,0	2,0	2,0
	2	2,0	2,0	2,0	2,0
	3	2,0	2,0	2,0	2,0

Зоны, указанные в таблице 25 1 - северная тайга, 2 - средняя тайга, 3 - южная тайга и более южные климатические зоны (только для целей настоящей Методики).

Макрорегионы, указанные в таблице 25 1 - Европейско-Уральская часть, 2 - Западная Сибирь, 3 - Восточная Сибирь, 4 - Дальний Восток (только для целей настоящей Методики).

6.1.10. Абсорбция углерода пулом подстилки рассчитывается по формулам (44-45):

$$\mathsf{MAbL}_{ij} = (\mathsf{MCL}_{ij} - \mathsf{MCL}_{i-1j}) / (\mathsf{TI}_{i-1j} + \mathsf{TI}_{ij}) + (\mathsf{MCL}_{i+1j} - \mathsf{MCL}_{ij}) / (\mathsf{TI}_{ij} + \mathsf{TI}_{i+1j}) (44)$$

при і -1 = 0 TI_{i-lj} = 0; при любых і+1, начало которых \geq 20 лет, TI_{i+lj} = 0

$$AbL_{ij} = S_{ij} * MAbL_{ij}$$
 (45)

где:

 MCL_{ij} - средний запас углерода подстилки насаждений возрастной группы і преобладающей породы j, тонн C га $^{-1}$;

 \mathbb{S}_{ii} - площадь насаждений возрастной группы і преобладающей породы j, га;

 $MAbL_{ij}$ - средняя годичная абсорбция углерода пулом подстилки насаждений возрастной группы і преобладающей породы į, тонн С га $^{-1}$ год $^{-1}$;

 MCL_{i-1j} - средний запас углерода подстилки насаждений возрастной группы i-1 (предшествующая возрастной группе i) преобладающей породы j, т C га $^{-1}$;

 TI_{i-1j} - временной интервал возрастной группы i-1 преобладающей породы j, лет;

 MCL_{i+1j} - средний запас углерода подстилки насаждений возрастной группы i+1 (следующая за возрастной группой i) преобладающей породы j, тонн C га $^{-1}$;

 Π_{i+j} - временной интервал возрастной группы і+1 преобладающей породы ј, лет;

 AbL_{ij} - годичная абсорбция углерода пулом подстилки насаждений возрастной группы і преобладающей породы į, тонн C год $^{-1}$;

 Π_{ii} - временной интервал возрастной группы і преобладающей породы j, лет.

6.1.11. Потери пула подстилки при сплошных рубках рассчитываются по формулам (46-47).

$$LsLH = ASH(CL_m / S_m - MCL_{0m})$$
 (46)

где:

 $L_{s}L_{H}$ - годичные потери углерода пулом постилки покрытых лесом земель при сплошных рубках, тонн C год $^{-1}$;

ASH - годичная площадь сплошных рубок, га год $^{-1}$;

 ${
m CL}_{
m m}$ - суммарный запас углерода подстилки в спелых лесах, тонн C;

 $m MCL_{0m}$ - средний запас углерода подстилки для 0-возрастной группы (временно не покрытые лесом земли), рассчитанный с учетом соотношения площадей преобладающих пород в спелых лесах, тонн С га $^{-1}$ (таблица 25.1);

 \mathbb{S}_{m} - суммарная площадь спелых лесов, га.

Потери пула подстилки при деструктивных лесных пожарах.

$$LsLF = ASF(CL_a / S_a - MCL_{Oa})$$
 (47)

где:

 $\bot_{s} \bot_{F}$ - годичные потери углерода пулом постилки покрытых лесом земель при деструктивных лесных пожарах, тонн С год $^{-1}$;

 \mathbb{ASH} - годичная площадь деструктивных лесных пожарах,* га год $^{-1}$;

 ${
m CL}_{
m a}$ - суммарный запас углерода подстилки на покрытых лесом землях, тонн C;

MCL0a - средний запас углерода подстилки для 0-возрастной группы (временно не покрытые лесом земли), рассчитанный с учетом соотношения площадей преобладающих пород на покрытых лесом землях, тонн C га $^{-1}$ (таблица 25.1);

 $S_{\rm a}$ - суммарная площадь покрытых лесом земель, га.

6.1.12. Годичный бюджет по пулу углерода подстилки рассчитывается по формуле (48):

^{*} Текст соответствует оригиналу. - Примечание изготовителя базы данных.

BP = AbL - LsLH - LsLF (48)

где:

BL - годичный бюджет углерода по пулу подстилки покрытых лесом земель, тонн С год $^{-1}$;

AbL - годичная абсорбция углерода пулом подстилки покрытых лесом земель, тонн С год $^{-1}$;

LsLH - годичные потери углерода пулом подстилки покрытых лесом земель при сплошных рубках, тонн С год $^{-1}$;

LsLF - годичные потери углерода пулом подстилки покрытых лесом земель при деструктивных лесных пожарах, тонн C год $^{-1}$.

Таблица 25.1. Средние значения запаса углерода подстилки (тонн C га-1) для 0-й возрастной группы (временно не покрытые лесом земли) по преобладающим древесным породам

Преобладающая	Зона		Макро	регион	
порода		1	2	3	4
Сосна	1	8,9	2,1	5,5	1,3
	2	11,1	15,6	3,3	3,3
	3	5,8	5,0	4,2	4,2
Ель	1	10,1	9,9	9,9	9,9
	2	6,8	6,8	6,8	6,0
	3	7,0	5,7	6,3	4,2
Пихта	1	2,8	2,8	2,8	2,8
	2	2,8	2,8	2,8	2,8
	3	4,0	4,0	4,0	4,0
Лиственница	1	10,6	10,6	8,2	3,8
	2	4,7	4,7	4,7	4,7
	3	3,5	3,5	3,5	3,5
Кедр	1	4,3	4,3	4,3	1,4
	2	5,5	5,5	5,5	5,5
	3	2,2	2,2	2,2	3,1
Твердолиственные	1	3,5	3,5	3,5	3,0
	2	3,5	3,5	3,5	3,0
	3	3,5	3,5	3,5	3,0
Береза	1	12,7	2,4	2,4	2,4

	2	8,7	2,1	2,1	2,1
	3	4,0	4,0	1,8	4,2
Осина	1	6,6	6,6	6,6	6,6
	2	6,6	6,6	6,6	6,6
	3	3,1	3,1	1,7	1,7
Прочие мягколиственные	1	4,3	4,3	4,3	4,3
	2	4,3	4,3	4,3	4,3
	3	4,3	4,3	4,3	4,3
Кедровый стланик	1	1,3	1,3	1,3	1,3
	2	1,3	1,3	1,3	1,3
	3	1,3	1,3	1,3	1,3

Зоны, указанные в таблице 25.1. 1 - северная тайга, 2 - средняя тайга, 3 - южная тайга и более южные климатические зоны (только для целей настоящей Методики).

Макрорегионы, указанные в таблице 25.1. 1 - Европейско-Уральская часть, 2 - Западная Сибирь, 3 - Восточная Сибирь, 4 - Дальний Восток (только для целей настоящей Методики).

6.1.13. Расчет запаса углерода в почве насаждений преобладающих пород проводится по формуле (49):

$$\text{CS}_{ij} = \text{S}_{ij} * \text{KS}_{ij} * (49)$$

где:

 \mathbb{CS}_j - запас углерода в оцениваемом слое почвы под насаждениями группы возраста і преобладающей породы j, тонн C;

 $\mathbb{S}_{\hat{1}}$ - площадь насаждений группы возраста і преобладающей породы j, га;

 ${
m KS}_{j}\,$ - средний запас углерода в слое оцениваемом почвы под насаждениями группы возраста і преобладающей породы j, тонн C га $^{-1}$. Средний запас углерода в слое почвы 0-30 см представлен в таблицах 25.2-25.4.

При этом допускается оценивать запас и баланс углерода для слоя почвы до глубины 100 см.

Таблица 25.2. Средние значения запаса углерода слоя почвы 0-30 см (тонн С га $^{-1}$) в молодняках 1 класса возраста преобладающих древесных пород

Преобладающая	Зона	Макрорегион					
порода		1 2 3 4					
Сосна	1	81,2	127,0	127,0	127,0		

^{*} Формула и экспликация соответствуют оригиналу. - Примечание изготовителя базы данных.

	2	43,8	104,7	75,0	49,7
	3	67,2	90,4	74,6	74,6
Ель	1	114,8	79,8	94,1	94,1
	2	60,1	103,7	132,7	132,7
	3	74,5	108,7	146,9	146,9
Пихта	1	86,7	86,7	94,9	94,9
	2	86,7	86,7	94,9	94,9
	3	91,2	91,2	70,5	74,6
Лиственница	1	148,0	93,3	93,3	93,3
	2	81,3	81,3	81,3	71,1
	3	69,3	69,3	119,3	178,3
Кедр	1	151,7	151,7	158,7	158,7
	2	151,7	151,7	126,4	126,4
	3	125,8	125,8	125,8	125,8
Твердолиственные	1	47,2	47,2	47,2	47,2
	2	47,2	47,2	47,2	47,2
	3	46,0	90,8	76,6	76,6
Береза	1	85,3	144,3	144,3	144,3
	2	68,1	68,1	125,0	125,0
	3	75,8	97,1	94,6	94,6
Осина	1	62,3	62,3	82,3	82,3
	2	62,3	62,3	82,3	82,3
	3	62,3	62,3	82,3	82,3
Прочие мягколиственные	1	97,1	74,2	74,2	74,2
	2	97,1	74,2	74,2	74,2
	3	55,4	55,4	55,4	55,4
Кедровый стланик	1	145,4	145,4	145,4	145,4
	2	145,4	145,4	145,4	145,4
	3	145,4	145,4	145,4	145,4

Зоны, указанные в таблице 25.2. 1 - северная тайга, 2 - средняя тайга, 3 - южная тайга и более южные климатические зоны (только для целей настоящей Методики).

Макрорегионы, указанные в таблице 25.2. 1 - Европейско-Уральская часть, 2 - Западная

Сибирь, 3 - Восточная Сибирь, 4 - Дальний Восток (только для целей настоящей Методики).

Таблица 25.3. Средние значения запаса углерода слоя почвы 0-30 см (тонн С га $^{-1}$) в молодняках 2 класса возраста преобладающих древесных пород

Преобладающая	Зона		Макро	регион	
порода		1	2	3	4
Сосна	1	86,4	135,2	135,2	135,2
	2	46,6	111,4	79,8	52,9
	3	71,5	96,2	79,4	79,4
Ель	1	122,2	84,9	100,1	100,1
	2	64,0	110,4	141,2	141,2
	3	79,3	115,7	156,3	156,3
Пихта	1	92,3	92,3	101,0	101,0
	2	92,3	92,3	101,0	101,0
	3	97,1	97,1	75,0	79,4
Лиственница	1	157,5	99,3	99,3	99,3
	2	86,5	86,5	86,5	75,7
	3	73,7	73,7	126,9	189,8
Кедр	1	161,4	161,4	168,9	168,9
	2	161,4	161,4	134,5	134,5
	3	133,9	133,9	133,9	133,9
Твердолиственные	1	50,2	50,2	50,2	50,2
	2	50,2	50,2	50,2	50,2
	3	49,0	96,7	81,5	81,5
Береза	1	91,0	153,9	153,9	153,9
	2	72,6	72,6	133,3	133,3
	3	80,9	103,5	100,9	100,9
Осина	1	66,4	66,4	87,7	87,7
	2	66,4	66,4	87,7	87,7
	3	66,4	66,4	87,7	87,7
Прочие мягколиственные	1	103,6	79,1	79,1	79,1
	2	103,6	79,1	79,1	79,1
	3	59,1	59,1	59,1	59,1

Кедровый стланик	1	154,7	154,7	154,7	154,7
	2	154,7	154,7	154,7	154,7
	3	154,7	154,7	154,7	154,7

Зоны, указанные в таблице 25.3 1 - северная тайга, 2 - средняя тайга, 3 - южная тайга и более южные климатические зоны (только для целей настоящей Методики).

Макрорегионы, указанные в таблице 25.3 1 - Европейско-Уральская часть, 2 - Западная Сибирь, 3 - Восточная Сибирь, 4 - Дальний Восток (только для целей настоящей Методики).

Таблица 25.4. Средние значения запаса углерода слоя почвы 0-30 см (тонн С га $^{-1}$) в средневозрастных и более старших группах возраста преобладающих древесных пород

Преобладающая	Зона		Макро	регион	
порода		1	2	3	4
Сосна	1	86,4	135,2	135,2	135,2
	2	46,6	111,4	79,8	52,9
	3	71,5	96,2	79,4	79,4
Ель	1	122,2	84,9	100,1	100,1
	2	64,0	110,4	141,2	141,2
	3	79,3	115,7	156,3	156,3
Пихта	1	92,3	92,3	101,0	101,0
	2	92,3	92,3	101,0	101,0
	3	97,1	97,1	75,0	79,4
Лиственница	1	157,5	99,3	99,3	99,3
	2	86,5	86,5	86,5	75,7
	3	73,7	73,7	126,9	189,8
Кедр	1	161,4	161,4	168,9	168,9
	2	161,4	161,4	134,5	134,5
	3	133,9	133,9	133,9	133,9
Твердолиственные	1	50,2	50,2	50,2	50,2
	2	50,2	50,2	50,2	50,2
	3	49,0	96,7	81,5	81,5
Береза	1	93,8	158,7	158,7	158,7
	2	74,9	74,9	137,4	137,4
	3	83,4	106,8	104,1	104,1

Осина	1	68,5	68,5	90,5	90,5
	2	68,5	68,5	90,5	90,5
	3	68,5	68,5	90,5	90,5
Прочие мягколиственные	1	106,8	81,6	81,6	81,6
	2	106,8	81,6	81,6	81,6
	3	61,0	61,0	61,0	61,0
Кедровый стланик	1	154,7	154,7	154,7	154,7
	2	154,7	154,7	154,7	154,7
	3	154,7	154,7	154,7	154,7

Зоны, указанные в таблице 25.4. 1 - северная тайга, 2 - средняя тайга, 3 - южная тайга и более южные климатические зоны (только для целей настоящей Методики).

Макрорегионы, указанные в таблице 25.4. 1 - Европейско-Уральская часть, 2 - Западная Сибирь, 3 - Восточная Сибирь, 4 - Дальний Восток (только для целей настоящей Методики).

6.1.14. Оценка абсорбции углерода оцениваемым слоем почвы осуществляется по формулам (50-51):

$$\text{MAbS}_{ij} = (\text{MCS}_{ij} - \text{MCS}_{i-1j}) / (\text{TI}_{i-1j} + \text{TI}_{ij}) + (\text{MCS}_{i+1j} - \text{MCS}_{ij}) / (\text{TI}_{ij} + \text{TI}_{i+j}) \text{ (50)}$$

при i-1=0 TI_{i-1i} = 0; при любых i+1, начало которых \geq 20 лет, TI_{i+1i} = 0.

$$AbL_{ii} = S_{ii} * MAbS_{ii}$$
 (51)

где:

 MCS_{ij} - средний запас углерода почвы насаждений возрастной группы і преобладающей породы j, тонн C га $^{-1}$;

 \mathbb{S}_{ij} - площадь насаждений возрастной группы і преобладающей породы j, га;

 $\mathbb{M}AbS_{ij}$ - средняя годичная абсорбция углерода пулом почвы насаждений возрастной группы і преобладающей породы j, тонн C га $^{-1}$ год $^{-1}$;

 ${
m MCS}_{i\text{-}1j}$ - средний запас углерода почвы насаждений возрастной группы i-1 (предшествующая возрастной группе i) преобладающей породы j, тонн C га $^{-1}$;

 TI_{ij} - временной интервал возрастной группы і преобладающей породы ј, лет;

 Π_{i-1i} - временной интервал возрастной группы і - 1 преобладающей породы j, лет;

 MCS_{i+1j} - средний запас углерода почвы насаждений возрастной группы i+1 (следующая за возрастной группой i) преобладающей породы j, тонн C га $^{-1}$;

 TI_{i+j} - временной интервал возрастной группы і+1 преобладающей породы ј, лет;

 AbS_{ij} - годичная абсорбция углерода пулом почвы насаждений возрастной группы і преобладающей породы j, тонн C год $^{-1}$.

6.1.15. Расчет потерь углерода почвы при сплошных рубках проводится по формуле (52):

$$LsSH = ASH(CS_m / S_m - MCS_{0m}) (52)$$

где:

LsSH - годичные потери углерода пулом почвы покрытых лесом земель при сплошных рубках, тонн С rog^{-1} ;

ASH - годичная площадь сплошных рубок, га год $^{-1}$;

 \mathbb{CS}_{m} - суммарный запас углерода почвы в спелых лесах, тонн C;

 ${
m MCS}_{0m}$ - средний запас углерода почвы для 0-возрастной группы (временно не покрытые лесом земли), рассчитанный с учетом соотношения площадей преобладающих пород в спелых лесах, тонн C га $^{-1}$ (таблица 25.5);

 \mathbb{S}_{m} - суммарная площадь спелых лесов, га.

6.1.16. Потери пула почвы при деструктивных лесных пожарах рассчитываются по формуле (53):

$$LsSF = ASF(CS_a/S_a - MCS_{0a})$$
 (53)

где:

LsSF - годичные потери углерода пулом почвы покрытых лесом земель при деструктивных лесных пожарах, тонн С rod^{-1} ;

ASH - годичная площадь деструктивных лесных пожарах, га год $^{-1}$;

 ${\rm CS}_{\rm a}$ - суммарный запас углерода почвы на покрытых лесом землях, тонн C;

 MCS_{0a} - средний запас углерода почвы для 0-возрастной группы (временно не покрытые лесом земли), рассчитанный с учетом соотношения площадей преобладающих пород на покрытых лесом землях, тонн C га $^{-1}$ (таблица 25.5);

 $\mathbb{S}_{\mathbf{a}}$ - суммарная площадь покрытых лесом земель, га.

6.1.17. Годичный бюджет углерода по пулу почвы проводится по формуле (54):

где:

BS - годичный бюджет углерода по оцениваемому слою почвы покрытых лесом земель, тонн C rog^{-1} ;

AbS - годичная абсорбция углерода оцениваемым слоем почвы покрытых лесом земель, тонн C rog^{-1} ;

LsSH - годичные потери углерода пулом почвы покрытых лесом земель при сплошных рубках, тонн С rog^{-1} ;

LsSF - годичные потери углерода пулом почвы покрытых лесом земель при деструктивных лесных пожарах, тонн С rod^{-1} .

Таблица 25.5. Средние значения запаса углерода почвы (тонн C га ⁻¹) для 0-й возрастной группы (временно не покрытые лесом земли) по преобладающим древесным породам

Преобладающая	Зона		Макро	регион	
порода		1	2	3	4
Сосна	1	75,9	118,8	118,8	118,8
	2	41,0	97,9	70,1	46,5
	3	62,8	84,6	69,8	69,8
Ель	1	107,4	74,6	88,0	88,0
	2	56,3	57,0	124,1	124,1
	3	69,7	101,7	137,4	137,4
Пихта	1	81,1	81,1	88,8	88,8
	2	81,1	81,1	88,8	88,8
	3	85,4	85,4	65,9	69,8
Лиственница	1	138,4	87,3	87,3	87,3
	2	76,0	76,0	76,0	66,5
	3	64,8	64,8	111,5	166,8
Кедр	1	141,9	141,9	148,5	148,5
	2	141,9	141,9	118,2	118,2
	3	117,7	117,7	117,7	117,7
Твердолиственные	1	44,1	44,1	44,1	44,1
	2	44,1	44,1	44,1	44,1
	3	43,1	85,0	71,6	71,6
Береза	1	82,5	139,5	139,5	139,5
	2	65,8	65,8	120,8	120,8
	3	73,3	93,9	91,5	91,5
Осина	1	60,2	60,2	79,5	79,5

	2	60,2	60,2	79,5	79,5
	3	60,2	60,2	79,5	79,5
Прочие мягколиственные	1	93,9	71,7	71,7	71,7
	2	93,9	71,7	71,7	71,7
	3	53,6	53,6	53,6	53,6
Кедровый стланик	1	136,0	136,0	136,0	136,0
	2	136,0	136,0	136,0	136,0
	3	136,0	136,0	136,0	136,0

Зоны, указанные в таблице 25.5. 1 - северная тайга, 2 - средняя тайга, 3 - южная тайга и более южные климатические зоны (только для целей настоящей Методики).

Макрорегионы, указанные в таблице 25.5. 1 - Европейско-Уральская часть, 2 - Западная Сибирь, 3 - Восточная Сибирь, 4 - Дальний Восток (только для целей настоящей Методики).

6.1.18. Суммарный бюджет углерода для покрытых лесом земель рассчитывается по формуле (55):

$$BT = BP + BD + BL + BS (55)$$

где:

BT - суммарный годичный бюджет углерода покрытых лесом земель, тонн С rod^{-1} ;

BP - годичный бюджет углерода по пулу биомассы покрытых лесом земель, тонн С год $^{-1}$;

BD - годичный бюджет углерода по пулу мертвой древесины покрытых лесом земель, т С год $^{-1}$;

BL - годичный бюджет углерода по пулу подстилки покрытых лесом земель, тонн C год $^{-1}$;

- BS годичный бюджет углерода по оцениваемому слою почвы покрытых лесом земель, тонн С rog^{-1} .
- 6.2. Выбросы ${\rm CO}_2$ и иных парниковых газов, кроме ${\rm CO}_2$, от осушения органогенных почв лесных земель

$$CO_2$$
_organic = A * EF * 44/12 (56)

где:

 CO_2 _organic - выбросы CO_2 , тонны CO_2 ;

А - площадь осушенных торфяников на лесных землях (торфоразработок), га;

EF - коэффициент эмиссии, тонн С га $^{-1}$ год $^{-1}$.

$$N_2O$$
 organic = A * EF * 44/28 (57)

где:

 N_2 О _organic - выбросы N_2 О , кг N_2 О ;

А - площадь осушенных торфяников на лесных землях (торфоразработок), га;

EF - коэффициент эмиссии, кг N га $^{-1}$ год $^{-1}$.

Выбросы ${
m CH_4}$ рассчитываются в соответствии с формулой (58):

где:

 CH_4 _organic - выбросы метана, кг CH_4 ;

А - площадь торфоразработок, га;

Frac_ditch - доля общей площади под осушительными каналами, не имеет размерности;

 ${
m EF}_{-{
m land}}$ - коэффициент выбросов для участков, не занятых осушительными каналами, кг ${
m CH}_{\it d}$ га $^{-1}$ год $^{-1}$;

 $\mathrm{EF}_{\mathrm{ditch}}$ - коэффициент выбросов для осушительных канав, кг CH_4 га $^{-1}$ год $^{-1}$.

6.3. Выбросы парниковых газов от пожаров.

$$L_{\text{mowap}} = A * MB * C_f * G_{ef} * 10^{-3}$$
 (59)

где:

 $L_{ exttt{no} exttt{*} ext{ap}}$ - количество выбросов от пожара, тонн каждого парникового газа, например, CO_2 ,

 ${\rm CH_4},\ {\rm N_2O}$ и так далее;

А - площадь, пройденная пожаром, га;

MB - масса доступного для горения топлива (биомасса, подстилка и мертвая древесина), тонн га $^{-1}$ (таблица 25.6);

 $\mathbb{C}_{\mathbf{f}}$ - коэффициент сгорания, не имеет размерности. Также используются значения 0,43 для верхового пожара и 0,15 для низового пожара в бореальных лесах;

 $G_{\rm ef}$ - коэффициент выбросов, г кг $^{-1}$ сжигаемого сухого вещества (таблица 25.7).

Таблица 25.6. Средние значения массы доступного для горения топлива (биомасса, подстилка, мертвая древесина) для лесных земель, тонн га⁻¹

Пулы	Покрытые лесной растительностью земли	Непокрытые лесной растительностью земли	
Биомасса	87,9	10,4	

Мертвая древесина	17,4	1,1
Подстилка	16,1	10,9
Всего	121,4	22,4

Таблица 25.7. Коэффициенты выбросов основных парниковых газов для пожаров на лесных землях, г кг $^{-1}$ сжигаемого вещества (использовать как количественное значение для $G_{\rm ef}$)

Категория	CO2	СО	CH ₄	N ₂ O	NOx
Бореальный лес	1569±131	107±37	4,7±1,9	0,26±0,07	3,0±1,4
Биотопливо	1550±95	78±31	6,1±2,2	0,06	1,1±0,6

6.4. Пересчетные коэффициенты

Пересчетные коэффициенты и параметры представлены в таблицах 24.4-25.6.

Коэффициент выброса CO_2 при осушении органогенных почв лесных земель EF равен 0,71 тонн С га $^{-1}$ год $^{-1}$.

Коэффициент выброса N_2 O при осушении органогенных почв лесных земель EF равен 1,71 кг N га $^{-1}$ год $^{-1}$.

Коэффициенты для расчета выброса ${
m CH_4}$ при осушении органогенных почв лесных земель равны:

Frac_ditch=0,025;

$$EF_{land} = 4,5 CH_{4K\Gamma \Gamma a}^{-1} \Gamma o J^{-1};$$

$$EF_{ditch} = 217 CH_{4 \, K\Gamma \, \Gamma a}^{-1} \, \Gamma O A^{-1}$$
.

- 7. Расчет объема поглощений парниковых газов нелесными землями, переведенными в земли лесного фонда (в части лесных земель), земли особо охраняемых территорий и объектов, земли специального назначения
 - 7.1. Изменения запасов углерода.
- 7.1.1. Оценка динамики суммарного запаса углерода в пуле биомассы насаждений различных лет создания выполняется по формуле (60):

$$\mathtt{CPA}_{ij1} = \mathtt{SA}_{j1} * \mathtt{CPAM}_{ij} \ (60)$$

где:

 ${\Bbb CPA}_{ij1}$ - суммарный запас углерода, накопленный к году і биомассой насаждений типа ј, созданными в год 1, тонн C;

 \mathbb{SA}_{j1} - площадь насаждений типа j, созданных в год 1, га;

 ${\rm CPAM}_{ij}$ - средний запас углерода, накопленный биомассой насаждений типа j к году i, тонн C га $^{-1}$ (таблицы 25.8., 25.9.).

Таблица 25.8. Динамика среднего запаса углерода в различных пулах по мере роста противоэрозионных лесных насаждений

Год	Пул углерода, тонн C га ⁻¹							
	Биомасса надземная	Биомасса подземная	Мертвая Древесина	Подстилка	Почва	Итого		
1	0,0	0,0	0,0	0,1	0,7	0,9		
2	0,4	0,2	0,0	0,3	1,5	2,3		
3	1,2	0,4	0,0	0,4	2,2	4,2		
4	2,1	0,8	0,0	0,6	3,0	6,5		
5	3,3	1,2	0,2	0,7	3,7	9,1		
6	4,5	1,6	0,4	0,9	4,4	11,8		
7	5,9	2,1	0,7	1,0	5,2	14,9		
8	7,3	2,6	1,1	1,2	5,9	18,0		
9	8,7	3,1	1,5	1,3	6,7	21,4		
10	10,2	3,6	1,9	1,5	7,4	24,5		
11	11,8	4,1	2,3	1,6	8,1	27,9		
12	13,4	4,5	2,8	1,8	8,9	31,4		
13	15,0	5,0	3,4	1,9	9,6	35,0		
14	16,6	5,5	4,2	2,1	10,4	38,7		
15	18,1	6,0	4,6	2,2	11,1	42,0		
16	19,9	6,4	5,1	2,4	11,8	45,7		
17	21,6	6,9	5,8	2,5	12,6	49,4		
18	23,3	7,4	6,6	2,7	13,3	53,3		
19	25,0	7,9	7,5	2,8	14,0	57,3		
20	26,7	8,3	7,8	3,0	14,8	60,6		
21	28,5	8,8	8,2	3,0	15,5	64,0		
22	30,3	9,2	8,6	3,0	16,3	67,4		
23	32,0	9,6	9,2	3,0	17,0	70,8		
24	33,8	10,0	9,9	3,0	17,7	74,4		

25	35,5	10,4	10,2	3,0	18,5	77,6
26	37,1	10,9	10,6	3,0	19,2	80,7
27	38,7	11,3	11,1	3,0	20,0	84,0
28	40,3	11,7	11,6	3,0	20,7	87,2
29	41,8	12,1	12,3	3,0	21,4	90,6
30	43,4	12,5	13,0	3,0	22,2	94,1

Таблица 25.9. Динамика среднего запаса углерода в различных пулах по мере роста полезащитных лесных насаждений

Год		П	ул углерода, тонн	С га ⁻¹		
	Биомасса надземная	Биомасса подземная	Мертвая Древесина	Подстилка	Почва	Итого
1	0,0	0,0	0,0	0,14	0,7	0,9
2	0,9	0,3	0,0	0,3	1,5	3,0
3	2,2	0,9	0,0	0,4	2,2	5,7
4	3,7	1,6	0,1	0,6	3,0	8,9
5	5,3	2,1	0,6	0,7	3,7	12,4
6	6,9	2,8	1,1	0,8	4,4	16,1
7	9,1	3,5	1,8	1,0	5,2	20,6
8	11,2	4,3	2,7	1,1	5,9	25,2
9	13,5	5,0	4,0	1,3	6,7	30,5
10	15,9	5,8	4,4	1,4	7,4	34,9
11	18,6	6,5	5,1	1,6	8,1	40,0
12	21,3	7,3	5,9	1,7	8,9	45,1
13	24,0	8,0	6,9	1,8	9,6	50,3
14	26,6	8,7	8,0	2,0	10,4	55,7
15	29,2	9,4	8,4	2,1	11,1	60,3
16	31,9	10,1	8,9	2,3	11,8	65,0
17	34,6	10,7	9,6	2,4	12,6	69,9
18	37,2	11,4	10,4	2,5	13,3	74,9
19	39,8	12,0	11,4	2,7	14,0	80,0

20	42,4	12,7	11,5	2,8	14,8	84,2
21	44,9	13,2	11,6	2,8	15,5	88,1
22	47,4	13,7	11,9	2,8	16,3	92,1
23	49,8	14,2	12,2	2,8	17,0	96,0
24	52,2	14,7	12,6	2,8	17,7	100,0
25	54,4	15,2	12,6	2,8	18,5	103,5
26	56,4	15,6	12,6	2,8	19,2	106,7
27	58,3	16,1	12,8	2,8	20,0	110,0
28	60,2	16,6	12,9	2,8	20,7	113,3
29	62,0	17,1	13,2	2,8	21,4	116,6
30	63,8	17,5	13,6	2,8	22,2	120,0

7.1.2. Оценка динамики суммарного запаса углерода в биомассе защитных насаждений выполняется по формуле (61):

$$CPA_{ij} = \sum_{i} CPA_{ij1}$$
 (61)

где:

 ${
m CPA}_{ij}$ - суммарный запас углерода, накопленный к году і биомассой насаждений типа j, т C;

 ${
m CPA}_{ij1}$ - суммарный запас углерода, накопленный к году і биомассой насаждений типа ј, созданными в год 1, тонн С.

7.1.3. Оценка поглощения углерода в пуле биомассы защитных насаждений за данный год выполняется по формуле (62):

$$CPAS_{ij} = CPA_{(i+1)j} - CPA_{ij}$$
 (62)

где:

 ${\rm CPAS}_{ij}$ - поглощение углерода биомассой насаждений типа j за год i, тонн C год $^{-1}$;

 ${
m CPA}_{ij}$ - общий запас углерода, накопленный к году і биомассой насаждений типа j, тонн C;

 ${
m CPA}_{(i+1)j}$ - общий запас углерода, накопленный к следующему году i+1 биомассой насаждений типа j, тонн C.

7.1.4. Оценка динамики суммарного запаса углерода в пуле мертвого органического вещества насаждений различных лет создания выполняется по формуле (63):

$$\mathtt{CPD}_{ij1} = \mathtt{SD}_{j1} * \mathtt{CPDM}_{ij} \ \texttt{(63)}$$

где:

СРДіј1 - суммарный запас углерода, накопленный к году і в пуле мертвого органического

вещества насаждений типа ј, созданными в год 1, тонн С;

 ${
m SD}_{i1}$ - площадь насаждений типа j, созданных в год 1, га;

- ${
 m CPDM_{ij}}$ средний запас углерода, накопленный в пуле мертвого органического вещества насаждений типа j к году i, тонн C га $^{-1}$ (таблицы 25.8., 25.9.).
- 7.1.5. Оценка динамики суммарного запаса углерода в пуле мертвого органического вещества защитных насаждений выполняется по формуле (64):

$$CPD_{ij} = \sum_{i} CPD_{ij1}$$
, (64)

где:

- CPD_{ij} суммарный запас углерода, накопленный к году і в пуле мертвого органического вещества насаждений типа i, тонн C;
- CPD_{ij1} суммарный запас углерода, накопленный к году і в пуле мертвого органического вещества насаждений типа j, созданными в год 1, тонн C.
- 7.1.6. Оценка накопления углерода в пуле мертвого органического вещества защитных насаждений за данный год выполняется по формуле (65):

$$CPDS_{ij} = CPD_{(i+1)j} - CPD_{ij} (65)$$

где:

- \mathbb{CPDS}_{ij} накопление углерода в пуле мертвого органического вещества насаждений типа ј за год i, тонн C год $^{-1}$;
- ${
 m CPD}_{ij}$ общий запас углерода, накопленный к году і в пуле мертвого органического вещества насаждений типа j, тонн C;
- ${
 m CPD}_{(i+1)j}$ общий запас углерода, накопленный к следующему году i+1 в пуле мертвого органического вещества насаждений типа i, тонн C.
- 7.1.7. Оценка динамики суммарного запаса углерода в пуле подстилки насаждений различных лет создания выполняется по формуле (66):

$$CPL_{ii1} = SL_{i1} * CPLM_{ii}$$
 (66)

- CPLij1 суммарный запас углерода, накопленный к году і в пуле подстилки насаждений типа j, созданными в год 1, тонн C;
 - \mathbb{SL}_{i1} площадь насаждений типа j, созданных в год 1, га;
- CPLM_{ij} средний запас углерода, накопленный в пуле подстилки насаждений типа j к году i, тонн C га $^{-1}$ (таблицы 25.8, 25.9).
- 7.1.8. Оценка динамики суммарного запаса углерода в пуле подстилки защитных насаждений выполняется по формуле (67):

$$CPL_{ij} = \sum_{i} CPL_{ij1}$$
 (67)

где:

 ${
m CPL}_{ij}$ - суммарный запас углерода, накопленный к году і в пуле подстилки насаждений типа ј, тонн C;

 ${
m CPL}_{ij1}$ - суммарный запас углерода, накопленный к году і в пуле подстилки насаждений типа ј, созданными в год 1, тонн С.

7.1.9. Оценка накопления углерода в пуле подстилки защитных насаждений за данный год выполняется по формуле (68):

$$CPLS_{ij} = CPL_{(i+1)j} - CPL_{ij} (68)$$

где:

 ${
m CPLS}_{ij}$ - накопление углерода в пуле подстилки насаждений типа ј за год і, тонн С год $^{-1}$;

 CPL_{ij} - общий запас углерода, накопленный к году і в пуле подстилки насаждений типа j, тонн C;

 $^{\mathrm{CPL}}_{(i+1)j}$ - общий запас углерода, накопленный к следующему году i+1 в пуле подстилки насаждений типа j, тонн C.

7.1.10. Оценка динамики суммарного запаса углерода в пуле почв насаждений различных лет создания выполняется по формуле (69):

$$CPS_{ii1} = SS_{i1} * CPSM_{ii} (69)$$

где

CPSij1 - суммарный запас углерода, накопленный к году і в пуле почвы насаждений типа j, созданными в год 1, тонн C;

 \mathbb{SS}_{i1} - площадь насаждений типа j, созданных в год 1, га;

 ${
m CPSM}_{ij}$ - средний запас углерода, накопленный в пуле почвы насаждений типа j к году i, тонн C га $^{-1}$ (таблицы 25.8., 25.9.).

7.1.11. Оценка динамики суммарного запаса углерода в пуле почвы защитных насаждений выполняется по формуле (70):

$$CPS_{ij} = \sum_{i} CPS_{ij1}$$
 (70)

где:

 ${\Bbb CPS}_{ij}$ - суммарный запас углерода, накопленный к году і в пуле почвы насаждений типа j, тонн C;

 \mathbb{CPS}_{ij1} - суммарный запас углерода, накопленный к году і в пуле почвы насаждений типа ј, созданными в год 1, тонн С.

7.1.12. Оценка накопления углерода в пуле почвы защитных насаждений за данный год выполняется по формуле (71):

$$CPSS_{ij} = CPS_{(i+1)j} - CPS_{ij} (71)$$

где:

 \mathbb{CPSS}_{ij} - накопление углерода в пуле почвы насаждений типа j за год i, тонн C год $^{-1}$;

 ${
m CPS}_{ii}$ - общий запас углерода, накопленный к году і в пуле почвы насаждений типа j, тонн C;

 ${
m CPS}_{(i+1)j}$ - общий запас углерода, накопленный к следующему году i+1 в пуле почвы насаждений типа j, тонн C.

7.1.13. Оценка общего накопления углерода в сумме по пулам биомассы, мертвого органического вещества, подстилки и почв для защитных насаждений за данный год выполняется по формуле (72):

$$CPS_{ij} = CPAS_{ij} + CPDS_{ij} + CPLS_{ij} + CPSS_{ij} (72)$$

где:

 ${
m CPS}_{ij}$ - накопление углерода в сумме по пулам биомассы, мертвого органического вещества, подстилки и почв насаждений типа j за год i, тонн C год $^{-1}$;

 ${
m CPAS}_{ij}$ - поглощение углерода биомассой насаждений типа j за год i, тонн C год $^{-1}$;

 ${
m CPDS}_{ij}$ - накопление углерода в пуле мертвого органического вещества насаждений типа ј за год і, тонн C год $^{-1}$;

 ${
m CPLS}_{ij}$ - накопление углерода в пуле подстилки насаждений типа ј за год і, тонн С год $^{-1}$;

 ${
m CPSS}_{ij}$ - накопление углерода в пуле почвы насаждений типа ј за год і, тонн С год $^{-1}$.

7.2. Выбросы ${\rm CO}_2$ и иных парниковых газов, кроме ${\rm CO}_2$, от осушения органогенных почв земель, переведенных в земли лесного фонда.

$$CO_2$$
_organic = A *EF *44/12(73)

где:

 CO_2 _organic - выбросы CO_2 , тонны CO_2 ;

А - площадь осушенных торфяников на лесных землях (торфоразработок), га;

EF - коэффициент эмиссии, тонн C га $^{-1}$ год $^{-1}$.

$$N_2O_{\text{organic}} = A * EF * 44 / 28 (74)$$

 N_2 О_organic - выбросы N_2 О , кг N_2 О ;

А - площадь осушенных торфяников на лесных землях (торфоразработок), га;

EF - коэффициент эмиссии, кг N га $^{-1}$ год $^{-1}$.

Выбросы ${
m CH_4}$ рассчитываются в соответствии с формулой (75):

где:

 CH_{4} organic - выбросы метана, кг CH_{4} ;

А - площадь торфоразработок, га;

Frac_ditch - доля общей площади под осушительными каналами, не имеет размерности;

EF_land - коэффициент выбросов для участков, не занятых осушительными каналами, кг $\mathrm{CH}_\mathtt{d}$ га $^{-1}$ год $^{-1}$;

EF_ditch - коэффициент выбросов для осушительных канав, кг ${
m CH_4}$ га $^{-1}$ год $^{-1}$.

7.3. Выбросы парниковых газов от пожаров.

$$L \pi \circ \text{map} = A * MB * Cf * Gef * 10^{-3} (76)$$

где:

Lпожар - количество выбросов от пожара, тонн каждого парникового газа, например, ${\rm CO_2}$, ${\rm CH_4},~{\rm N_2O}$ и так далее;

А - площадь, пройденная пожаром, га;

- MB масса доступного для горения топлива (биомасса, подстилка и мертвая древесина), тонн га $^{-1}$. Средний запас биомассы, подстилки, мертвой древесины получается делением удвоенной суммы запасов углерода в биомассе, подстилке и мертвой древесины на площадь лесных земель;
- Cf коэффициент сгорания, не имеет размерности. Также используются значения 0,43 для верхового пожара и 0,15 для низового пожара в бореальных лесах;

Gef - коэффициент выбросов, г кг $^{-1}$ сжигаемого сухого вещества.

7.4. Пересчетные коэффициенты.

Пересчетные коэффициенты представлены в таблицах 25.8-26.

Коэффициент выброса ${\rm CO}_2$ при осушении органогенных почв лесных земель EF равен 0,71 тонн C га $^{-1}$ год $^{-1}$.

Коэффициент выброса $N_2 \mathbb{O}$ при осушении органогенных почв лесных земель EF равен 1,71 кг N га $^{-1}$ год $^{-1}$.

Коэффициенты для расчета выброса ${
m CH_4}$ при осушении органогенных почв лесных земель равны:

Frac_ditch=0,025;

$$EF_{land} = 4,5 CH_4 кг га^{-1} год^{-1};$$

$$EF_{ditch}$$
 =217 CH_4 кг га $^{-1}$ год $^{-1}$.

Таблица 26. Коэффициенты выбросов основных парниковых газов для пожаров на землях, переведенных в лесные, г кг $^{-1}$ сжигаемого вещества (использовать как количественное значение для \mathbb{G}_{ef})

Категория	CO ₂	СО	CH ₄	N ₂ O	NOx
Бореальный лес	1569±131	107±37	4,7±1,9	0,26±0,07	3,0±1,4
Биотопливо	1550±95	78±31	6,1±2,2	0,06	1,1±0,6

- 8. Расчет объема поглощений парниковых газов сельскохозяйственными угодьями (в части пашни и земель, занятых многолетними насаждениями (садами, виноградниками и другими) (далее пахотные земли)
- 8.1. Расчет изменения запасов углерода в биомассе проводится применительно к многолетним древесным и кустарниковым насаждениям на сельскохозяйственных угодьях по формулам (77-79):

$$\Delta C = \Delta C_G - \Delta C_L(77)$$

где:

 ΔC - годовое изменение запасов углерода в резервуаре; тонны C год $^{-1}$,

 $∆C_G$ - годовые поступления углерода, тонны С год $^{-1}$;

 ΔC_I - годовые потери углерода, тонны С год $^{-1}$.

$$\Delta C_G = C_{gain} * A_{gain} (78)$$

где:

 ΔC_G - годовые поступления углерода, тонны С год $^{-1}$;

 C_{gain} - коэффициент накопления углерода в растущей биомассе многолетних сельскохозяйственных культур, тонн С га $^{-1}$ ·год $^{-1}$;

 \mathbb{A}_{gain} - площадь существующих в данном году многолетних культур, га.

$$\Delta C_L = C_{loss} * A_{loss}$$
 (79)

 ΔC_{1} - годовые потери углерода, тонны С год $^{-1}$.

 C_{loss} - коэффициент потерь углерода при вырубке или гибели насаждений многолетних сельскохозяйственных культур, тонн С га $^{-1}$ ·год $^{-1}$;

 \mathbb{A}_{loss} - площадь вырубленных или погибших в данном году многолетних культур, га.

8.2. Ежегодное изменение запасов углерода в пуле минеральных почв пахотных земель рассчитывается по формулам (80-86):

$$\Delta C_{\textit{mune parable}} = (Cfert + Clime + Cplant) - (Cresp + Cerosion) (80)$$

где:

 $\Delta C_{\text{мижеральные}}$ - изменения запасов углерода в пуле почвенного органического углерода в минеральных почвах, тонн С год $^{-1}$;

С fert - поступление С с органическими и минеральными удобрениями, тонн С rog^{-1} ;

С lime - поступление С с известковыми материалами, тонн С rod^{-1} ;

C plant - поступление C с растительными остатками, тонн C \log^{-1} ;

С resp - потери почвенного С с дыханием почв, тонн С rog^{-1} ;

C erosion - механические потери почвенного С в результате эрозии и дефляции, тонн С год $^{-1}$.

$$Cfert = \sum i \left(Ope_i * C_{ope_i} \right) + \sum i \left(Muh_j * C Muh_j \right) (81)$$

где:

С fert - поступление С с органическими и минеральными удобрениями, тонн С \log^{-1} ;

 ${
m Opr}_i$ - внесение органических удобрений в почвы в расчете на физический вес по видам органических удобрений і, тонн органических удобрений по видам год $^{-1}$;

 $\mathbb{C}_{\mathtt{opr}_i}$ - содержание углерода в сыром веществе разных видов органических удобрений, подготовленных к внесению в почвы, тонн С/тонн органического удобрения;

 $m M_{^{
m H}\rm H_{
m j}}$ - внесение минеральных удобрений в почвы по видам минеральных удобрений ј, тонн действующего вещества минеральных удобрений по видам год $^{-1}$;

Смин_j - содержание углерода в разных видах минеральных удобрений, тонн С/тонн действующего вещества минеральных удобрений.

Clime=Lime*8,75/100 (82)

где:

С lime - поступление С с известковыми материалами, тонн С год $^{-1}$;

Lime - общее количество известковых материалов, внесенных в почвы, тонн известковых материалов год $^{-1}$.

$$Cplant = C_{ab} + C_{un}$$
 (83)

$$C_{ab}$$
 или $C_{un} = \Sigma_i((a_iY_i + b_i)\square C_i)\square S_{i(84)}$

где:

 \mathbb{C}_{ab} - масса углерода, поступающего в почвы с пожнивными остатками (\mathbb{C}_{un} - корневыми остатками) культурных растений определенного вида і, кг \mathbb{C} ;

С plant - поступление С с растительными остатками, тонн С rod^{-1} ;

 Y_i - урожайность основной продукции данной культуры, ц. сух. в-ва га $^{-1}$;

 a_i и b_i - соответствующие коэффициенты для расчета массы пожнивных (или корневых) остатков данной сельскохозяйственной культуры при определенном уровне урожайности;

 C_{i} - содержание углерода в биомассе данной культуры, кг C кг сух. массы $^{-1}$;

S_і - посевная площадь данного вида растений, га.

Cerosion=A*EFerosion (85)

где:

Cerosion - механические потери почвенного С в результате эрозии и дефляции, тонн С год $^{-1}$;

А - площадь пахотных угодий, га;

EFerosion - коэффициент потерь углерода при эрозии и дефляции почв, тонн С га $^{-1}$ год $^{-1}$.

$$Cresp = \sum_{i} (Area_{i} * AC_{CO2i} * Veg * 0.6 * 1.43)/100 * 12/44 (86)$$

где:

Cresp - потери почвенного С с дыханием почв, тонн С rog^{-1} ;

Area; - площадь соответствующего типа і почв пахотных земель, га;

 ${
m AC_{CO2i}}$ - серия средних коэффициентов по дыханию микрофлоры почвы пахотных земель и для пара, мг ${
m CO_2}$ м $^{-2}$ час $^{-1}$;

Veg - продолжительность вегетационного периода, часы;

- 0,6 коэффициент для исключения дыхания корней (40%), не имеет размерности;
- 1,43 коэффициент для включения в расчет дыхание почв в течение холодного периода года, не имеет размерности;
 - 12/44 коэффициенты для пересчета из единиц CO_2 в углерод.

8.3. Расчет выбросов CO_2 и иных парниковых газов, кроме CO_2 от осушения органогенных почв сельскохозяйственных угодий производится по формулам (87-89):

$$CO_2$$
_organic = A *EF_C CO_2 *44/12(87)

где:

 CO_2 _organic - выбросы CO_2 от культивируемых осушенных органогенных почв, тонн CO_2 ;

А - площадь культивируемых осушенных органогенных почв, га;

 ${\rm EF_{C_CO2}}$ - коэффициент выброса ${\rm CO_2}$ от культивируемых осушенных органогенных почв, тонн C га $^{-1}$ год $^{-1}$.

$$N_2O_{organic} = A*EF_{N_1N2O}*44/28$$
 (88)

где:

 ${
m N_2O_organic}$ - выбросы ${
m N_2O}$ от культивируемых осушенных органогенных почв, кг ${
m N_2O}$;

А - площадь культивируемых осушенных органогенных почв, га;

 ${\rm EF_{N_N2O}}$ - коэффициент выброса ${\rm N_2O}$ от культивируемых осушенных органогенных почв, кг N- ${\rm N_2O}$ га $^{-1}$ год $^{-1}$ (значение 7,0±2,0 кг N- ${\rm N_2O}$ га $^{-1}$ год $^{-1}$).

где:

 $\mathrm{CH_{4_organic}}$ - выбросы метана, кг $\mathrm{CH_{4}}$;

А - площадь культивируемых осушенных органогенных почв, га;

Frac _{ditch} - доля общей площади под осушительными каналами, не имеет размерности;

 ${
m EF}_{_{
m land}}$ - коэффициент выбросов для участков, не занятых осушительными каналами, кг ${
m CH}_{A}$ га $^{-1}$ год $^{-1}$;

 ${
m EF}_{\rm ditch}$ - коэффициент выбросов для осушительных канав, кг ${
m CH}_4$ га $^{-1}$ год $^{-1}$.

8.4. Выбросы парниковых газов от пожаров

$$L \text{ mowap} = A * MB * C_f * G_{ef} * 10^{-3} (90)$$

где:

Lпожар - количество выбросов от пожара, тонн каждого парникового газа, например, CO_2 , CH_4 , N_2O и так далее;

А - площадь, пройденная пожаром, га;

МВ - масса доступного для горения топлива (средние запасы биомассы на пахотных землях),

тонн га $^{-1}$. Средний запас биомассы на пахотных землях составляет 1,52 \pm 0,5 тонн С га $^{-1}$ для травянистых растений и 63 тонн С га $^{-1}$ для многолетних насаждений;

 $\mathbb{C}_{\mathbf{f}}$ - коэффициент сгорания; не имеет размерности. Используется значение 0,9 для однолетних культур, 0,43 для верхового пожара и 0,15 для низового пожара на территории многолетних насаждений;

 $G_{\rm ef}$ - коэффициент выбросов; г кг $^{-1}$ сжигаемого сухого вещества.

8.5. Пересчетные коэффициенты

Коэффициенты для оценки изменения запаса углерода в пуле биомассы на сельскохозяйственных угодьях:

Средний коэффициент накопления углерода в растущей биомассе ($^{\rm C}_{\rm gain}$) для Российской Федерации соответствует 2,1 тонн С га $^{-1}$ год $^{-1}$.

Средние потери углерода при вырубке или гибели насаждений ($^{\rm C}_{\rm loss}$) в Российской Федерации соответствуют 63 тонн С га $^{-1}$.

Коэффициенты и пересчетные параметры для оценки изменений запасов углерода в пуле минеральных почв приведены в таблицах 26.1-26.7.

Коэффициент среднего выброса углерода EF_{C_CO2} от осушенных торфянистых почв равен 5,9±2,3 тонн C га $^{-1}$ год $^{-1}$. Коэффициент среднего выброса N_2 O от осушенных торфянистых почв EF_{N_N2O} равен 7,0±2,0 кг N- N_2 O га $^{-1}$ год $^{-1}$.

Следует использовать следующие коэффициенты для оценки выброса CH_4 :

Frac_ditch=0,5;

 ${\rm EF}_{\rm land}$ =0,0 ${\rm CH}_4$ кг га $^{-1}$ год $^{-1}$ (для осушенных пахотных земель бореальной или умеренной зон);

 ${
m EF}_{\rm ditch}$ =1165 ${
m CH}_4$ кг га $^{-1}$ год $^{-1}$ (для пахотных земель и глубоко осушенных луговых земель бореальной или умеренной зон).

Таблица 26.1. Содержание углерода в сыром веществе разных видов органических удобрений, подготовленных к внесению в почвы

Вид органического удобрения	Среднее содержание углерода (${}^{\mathrm{C}}_{\mathrm{opr_i}}$), % сырого вещества
Навоз	8,07
подстилочный	12,07
бесподстилочный	4,08
Торф	23,56
Помет	19,11

Солома, сидераты и другое	22,23
Среднее	18,24

Таблица 26.2. Коэффициенты по содержанию углерода в разных видах минеральных удобрений

Вид удобрений	Пересчетный коэффициент (углерод/действ. вещество) (С _{мин_ј})
азотные	0,13
фосфорные	0,015
калийные	0,017

Таблица 26.3. Уравнения для расчета количества углерода, поступающего в почвы с растительными остатками

Культура	Урожайность,	Углерод, поступающий с		
	ц/га	поверхностными остатками (Ab)	корнями (Un)	
озимая рожь	10-25	=(0,3·Y+3,2)·45/100	=(0,6·Y+8,9)·45/100	
	26-40	=(0,2·Y+6,3)·45/100	=(0,6·Y+13,9)·45/100	
озимая пшеница	10-25	=(0,4·Y+2,6)·48,53/100	=(0,9·Y+5,8)·48,53/100	
	26-40	=(0,1·Y+8,9)·48,53/100	=(0,7·Y+10)·48,53/100	
яровая пшеница	10-20	=(0,4·Y+1,8)·48,53/100	=(0,7·Y+10,2)·48,53/100	
	21-30	=(0,2·Y+5,4)·48,53/100	=(0,8·Y+6)·48,53/100	
ячмень	10-20	=(0,4·Y+1,8)·45,67/100	=(0,8·Y+6,5)·45,67/100	
	21-35	=(0,09·Y+7,6)·45,67/100	=(0,4·Y+13,45)·45,67/100	
овес	10-20	=(0,3·Y+3,2)·45/100	=(1·Y+2)·45/100	
	21-35	=(0,15·Y+6,12)·45/100	=(0,4·Y+16)·45/100	
просо	5-20	=(0,2·Y+5)·46,87/100	=(0,8·Y+7)·46,87/100	
	21-30	=(0,3·Y+3,3)·46,87/100	=(0,56·Y+11,2)·46,87/100	
кукуруза на зерно	10-35	=(0,23·Y+3,5)·45/100	=(0,8·Y+5,8)·45/100	
горох	5-20	=(0,14·Y+3,5)·45/100	=(0,66·Y+7,5)·45/100	
	21-30	=(0,2·Y+1,7)·45/100	=(0,37·Y+12,9)·45/100	
гречиха	5-15	=(0,25·Y+4,3)·45/100	=(1,1·Y+5,3)·45/100	
	16-30	=(0,2·Y+5,2)·45/100	=(0,54·Y+14,1)·45/100	

8-30	=(0,4·Y+3,1)·45/100	=(1·Y+6,6)·45/100
50-200	=(0,04·Y+1)·42,26/100	=(0,08·Y+4)·42,26/100
201-350	=(0,03·Y+4,1)·42,26/100	=(0,06·Y+8,6)·42,26/100
100-200	=(0,003·Y+2,5)·40,72/100	=(0,06·Y+5,45)·40,72/100
201-400	=(0,02·Y+0,8)·40,72/100	=(0,07·Y+3,5)·40,72/100
50-200	=(0,02·Y+1,5)·45/100	=(0,06·Y+5)·45/100
201-400	=(0,006·Y+3,6)·45/100	=(0,04·Y+6)·45/100
50-200	=(0,003·Y+2,4)·40,72/100	=(0,05·Y+5,2)·40,72/100
201-400	=(0,01·Y+1)·40,72/100	=(0,05·Y+5,5)·40,72/100
3-10	=(1,3·Y+9,4)·45/100
3-10	=(2,2·Y+9,1)·45/100
100-200	=(0,03·Y+3,6)·45/100	=(0,12·Y+8,7)·45/100
100-200	=(0,03·Y+3,6)·45/100	=(0,12·Y+8,7)·45/100
201-350	=(0,02·Y+5)·45/100	=(0,08·Y+16,2)·45/100
10-40	=(0,13·Y+6)·45/100	=(0,7·Y+7,5)·45/100
10-35	=(0,2·Y+6)·45/100	=(0,8·Y+11)·45/100
36-60	=(0,1·Y+10)·45/100	=(1·Y+15)·45/100
	50-200 201-350 100-200 201-400 50-200 201-400 3-10 3-10 100-200 100-200 201-350 10-40 10-35	

Таблица 26.4. Смыв углерода с одного гектара водосбора рек на территории Российской Федерации, кг га $^{-1}$ год $^{-1}$

Река	Площадь водосбора,		Смыв углерода с территории водосбора, кг·га $^{-1}$ ·год $^{-1}$								
	тыс.км ²	1991	1995	2000	2005	2010	2011	2012	2013	2014	Сред- нее за 2010- 2014
Кола	3,78	27,25	24,60	28,97	26,19	33,33	23,15	24,60	13,36	24,60	22,72
Онега	55,70	47,49	54,22	37,70	47,58	41,20	32,94	51,89	47,22	45,06	43,50
Сев. Двина	348,00	43,82	42,96	34,05	29,31	27,01	29,45	41,52	31,61	32,33	34,48
Мезень	56,40	35,82		28,55	30,50	25,44	25,00	52,57	30,76	28,63	35,57
Печора	312,00	49,04	44,07	37,50	49,20	30,13	36,86	33,97	22,28	33,65	32,69
Обь	2430,00	15,74	13,81	15,66	13,85	10,51	14,24	15,04	25,72	21,60	15,90
Таз	100,00	34,50		42,55	31,15	30,00	21,35	43,25	86,00	65,00	43,36
Енисей	2440,00	14,88	11,41	20,49	18,67	24,18	22,95	16,48	21,52	20,39	21,25

Анабар	78,80	25,57	22,27	22,02	22,40	20,24	20,49	18,27	8,88	25,00	16,12
Оленек	198,00	29,29	20,76	29,04	18,71	14,04	18,23	11,84	4,95	13,16	11,60
Лена	2430,00	12,00	12,90	15,16	13,74	11,87	14,05	11,69	16,28	14,67	14,32
Индигирка	322,00	7,89	8,63	25,00	15,99	14,18	15,31	11,32	19,41	20,03	13,73
Колыма	635,00	6,99		7,33	7,73	6,63	10,16	7,69	10,31	8,98	8,38
Камчатка	45,60	18,42	16,45	12,94	20,94	14,80	18,64	18,20	22,81	16,12	17,76
Тауй	25,10	27,89	33,86	12,35	18,21	17,43	46,81	36,45	35,06	50,80	34,92
Амур	1790,00	15,22	8,30	13,02	13,97	20,17	13,24	12,04	29,89	13,41	19,08
Тымь	7,72	29,60	35,62		0,00	22,22	26,75	29,66	28,50	24,74	26,83
Поронай	6,08	92,11	75,99	66,78	56,66	57,48	64,88	47,37	66,12	49,01	60,49
Нева	281,00	20,46		22,42	27,05	27,40	19,75	24,38	25,98	23,31	24,31
Луга	12,30	38,41		48,78	34,35	47,97	39,43	44,72	47,15	22,76	48,21
Преголя	13,60	22,17	39,34	13,97	24,19	18,82	23,46	23,71	20,66	11,07	21,00
Дон	420,00	7,33	5,95	4,05	9,63	4,80	3,54	4,71	5,39	4,94	4,43
Сев. Донец	80,90	6,30	8,84	4,51	7,29	6,00	4,68	4,35	4,65	4,46	4,48
Кубань	49,00	15,00	19,59	24,59	31,84	27,55	29,08	19,90	20,41	26,63	24,63
Сочи	0,30	27,03	23,65	47,64	40,20	117,06	331,08	270,27	117,06	28,55	192,60
Терек	37,40	24,60	20,72	14,04	13,33	8,54	7,82	6,10	6,59	6,95	6,86
Кума	20,00	3,58	2,14	0,00	3,10	1,09	1,40	1,50	1,32	1,45	1,35
Волга	1360,00	18,31		13,71	25,26	12,68	12,72	17,35	17,28	14,82	15,94
Урал	82,3								2,33	4,76	2,33
Верхняя Ангара	20,60	12,86	17,57	11,38							
Баргузин	19,80	16,06	13,01	10,48							
Селенга	445,00	4,98	4,98	2,72							
Среднее значение по всем водосборам		22,87	21,77	19,63	18,60	19,79	26,50	25,74	22,56	18,77	23,40

Таблица 26.5. Средние значения дыхания разных типов почв в агроценозах (${
m AC}_{
m CO2i}$) для разных лет периода после 1990 года

Эмиссия ${\rm CO}_2$, мг ${\rm CO}_2$ ·м $^{-2}$ ·час $^{-1}$	Почва	Эмиссия ${\rm CO}_2$, мг ${\rm CO}_2\cdot {\rm M}^{-2}\cdot {\rm vac}^{-1}$
--	-------	--

	1990	1991	1992	1993	1994 и далее
черноземы	402	357	313	268	223
дерново-подзолистые почвы	340	302	265	227	189
другие типы почв	256	228	199	171	142
Среднее по всем типам почв	368	327	286	245	204
Среднее для пара	207	184	161	138	115

Таблица 26.6. Средняя продолжительность вегетационных сезонов (Veg) по субъектам Российской Федерации, часы

Субъекты Российской Федерации	Длительность вегетационного периода (при среднемесячных температурах более +10°C), месяц	Длительность вегетационного периода, час
Республика Адыгея (Адыгея)	7,0	5124
Республика Алтай	5,0	3660
Республика Башкортостан	5,0	3660
Республика Бурятия	3,0	2196
Республика Дагестан	7,0	5124
Республика Ингушетия	7,0	5124
Кабардино-Балкарская Республика	7,0	5124
Республика Калмыкия	6,0	4392
Карачаево-Черкесская Республика	6,0	4392
Республика Карелия	3,0	2196
Республика Коми	3,5	2562
Республика Крым	7,0	5124
Республика Марий Эл	5,0	3660
Республика Мордовия	4,5	3294
Республика Саха (Якутия)	3,0	2196
Республика Северная Осетия - Алания	7,0	5124
Республика Татарстан (Татарстан)	5,0	3660
Республика Тыва	5,0	3660
Удмуртская Республика	4,0	2928

Республика Хакасия	5,0	3660
Чеченская республика	7,0	5124
Чувашская Республика - Чувашия	5,0	3660
Алтайский край	5,0	3660
Забайкальский край	3,0	2196
Камчатский край	2,3	1684
Краснодарский край	7,0	5124
Красноярский край	3,0	2196
Пермский край	4,0	2928
Приморский край	4,0	2928
Ставропольский край	6,0	4392
Хабаровский край	4,0	2928
Амурская область	3,5	2562
Архангельская область	3,0	2196
Астраханская область	6,0	4392
Белгородская область	5,0	3660
Брянская область	5,0	3660
Владимирская область	5,0	3660
Волгоградская область	5,0	3660
Вологодская область	4,0	2928
Воронежская область	5,0	3660
Ивановская область	5,0	3660
Иркутская область	3,0	2196
Калининградская область	5,0	3660
Калужская область	5,0	3660
Кемеровская область	4,0	2928
Кировская область	4,0	2928
Костромская область	4,0	2928
Курганская область	5,0	3660
Курская область	5,0	3660
Ленинградская область	5,0	3660

Липецкая область	5,0	3660
Магаданская область	1,5	1098
Московская область	5,0	3660
Мурманская область	3,0	2196
Ненецкий автономный округ	3,0	2196
Нижегородская область	5,0	3660
Новгородская область	5,0	3660
Новосибирская область	4,5	3294
Омская область	3,5	2562
Оренбургская область	5,0	3660
Орловская область	5,0	3660
Пензенская область	5,0	3660
Псковская область	5,0	3660
Ростовская область	6,0	4392
Рязанская область	5,0	3660
Самарская область	5,0	3660
Саратовская область	5,0	3660
Сахалинская область	4,0	2928
Свердловская область	4,0	2928
Смоленская область	5,0	3660
Тамбовская область	5,0	3660
Тверская область	5,0	3660
Томская область	3,5	2562
Тульская область	5,0	3660
Тюменская область	3,5	2562
Ульяновская область	5,0	3660
Челябинская область	5,0	3660
Ярославская область	4,0	2928
г.Москва	5,0	3660
г.Санкт-Петербург	5,0	3660
г.Севастополь	7,0	5124

Еврейская автономная область	3,5	2562
Ханты-Мансийский автономный округ - Югра	3,0	2196
Чукотский автономный округ	0,7	512
Ямало-Ненецкий автономный округ	2,0	1464

Таблица 26.7. Коэффициенты выбросов основных парниковых газов для сжигания биомассы, г кг $^{-1}$ сжигаемого вещества (использовать как количественное значение для $G_{\rm ef}$)

Категория	CO ₂	СО	CH ₄	N ₂ O	NOx
Сельскохозяйственные остатки	1515±177	92±84	2,7	0,07	2,5±1,0

- 9. Расчет объема поглощений парниковых газов землями, переведенными в пахотные земли
- 9.1. Изменения запасов углерода

При переводе земель в пахотные земли следует использовать метод разницы запасов углерода в разных пулах согласно формуле (91):

$$\Delta C_{\text{конверсия}} = \sum_{i} \left(C_{\text{после} \quad i} - C_{\partial o \quad i} \right) \times \Delta A_{e \text{ пахотные}} / D_{(91)}$$

где:

 $\Delta C_{\text{конеерсия}}$ - изменение в запасах углерода в углеродных пулах (биомасса, мертвое органическое вещество, подстилка, почва) на землях, переведенных в пахотные земли; тонны С год $^{-1}$;

 $C_{\mathtt{после}_i}$ - запасы углерода в углеродных пулах і (биомасса, мертвое органическое вещество, подстилка, почва) пахотных земель; тонны C га $^{-1}$;

 $\mathbb{C}_{\mathtt{дo_i}}$ - запасы углерода в углеродных пулах і (биомасса, мертвое органическое вещество, подстилка, почва) в категориях земель до перевода; тонны C га $^{-1}$;

 $\triangle A_{\rm g}$ пахотные - площадь категории земель, переведенных в пахотные земли в определенный год; га год $^{-1}$ (включает все переведенные земли, как из управляемых, так и неуправляемых категорий);

- D период времени, в течение которого происходят изменения запасов углерода в пулах в результате перевода земель в пахотные земли, лет (в первом приближении используется значение равное 1 году; далее используется значение 20 лет);
 - і пул углерода: биомасса, мертвое органическое вещество, подстилка, почва.
- 9.2. Выбросы CO_2 и иных парниковых газов, кроме CO_2 от осушения органогенных почв земель, переведенных в пахотные земли определяются по формуле (92):

$$CO_2$$
organic = $A*EF{CCO2}*44/12$ (92)

где:

 CO_2 _organic - выбросы CO_2 от культивируемых осушенных органогенных почв, тонн CO_2 ;

А - площадь культивируемых осушенных органогенных почв на землях, переведенных в пахотные земли, га;

 ${\rm EF_{C_CO2}}$ - коэффициент выброса ${\rm CO_2}$ от культивируемых осушенных органогенных почв, тонн C га $^{-1}$ год $^{-1}$.

Оценка выбросов закиси азота от культивируемых осушенных органогенных почв на землях, переведенных в пахотные земли, выполняется по формуле (93):

$$N_2O_{\text{organic}} = A * EF_{\text{N} N2O} * 44/28 (93)$$

где:

 N_2 О_organic - выбросы N_2 О от культивируемых осушенных органогенных почв, кг N_2 О;

A - площадь культивируемых осушенных органогенных почв на землях, переведенных в пахотные земли, га;

 ${\rm EF_{N_N2O}}$ - коэффициент выброса ${\rm N_2O}$ от культивируемых осушенных органогенных почв, кг N- ${\rm N_2O}$ га $^{-1}$ год $^{-1}$.

Оценка выбросов метана от площади культивируемых осушенных органогенных почв на землях, переведенных в пахотные земли, выполняется согласно формуле (94):

где:

 CH_4 _organic - выбросы метана, кг CH_4 ;

А - площадь культивируемых осушенных органогенных почв на землях, переведенных в пахотные земли, га;

Frac _ditch - доля общей площади под осушительными каналами, не имеет размерности;

 ${
m EF__{land}}$ - коэффициент выбросов для участков, не занятых осушительными каналами, кг ${
m CH_4\,ra^{-1}}$ год $^{-1}$;

 ${
m EF}_{
m ditch}$ - коэффициент выбросов для осушительных канав, кг ${
m CH_4}$ га $^{-1}$ год $^{-1}$.

9.3. Выбросы парниковых газов от пожаров.

Оценка прямых выбросов CO_2 и иных парниковых газов от пожаров выполняется по формуле:

$$L \text{ mowap} = A * MB * C_f * G_{ef} * 10^{-3} (95)$$

А - площадь, пройденная пожаром, га;

MB - масса доступного для горения топлива (средние запасы биомассы на пахотных землях), тонн га $^{-1}$;

 $\mathbb{C}_{\mathbf{f}}$ - коэффициент сгорания; не имеет размерности. Используется значение 0,9 для однолетних культур, 0,43 для верхового пожара и 0,15 для низового пожара на территории многолетних насаждений;

 $G_{\rm ef}$ - коэффициент выбросов; г кг $^{-1}$ сжигаемого сухого вещества.

9.4. Пересчетные коэффициенты

Перерасчетные коэффициенты указаны в таблицах 26.7-27.

Коэффициент среднего выброса углерода от осушенных торфянистых почв равен 5.9 ± 2.3 тонн С га $^{-1}$ год $^{-1}$.

Коэффициент среднего выброса $N_2 \odot$ от осушенных торфянистых почв равен 7,0±2,0 кг N- $N_2 \odot$ га $^{-1}$ год $^{-1}$.

Коэффициенты для расчета выброса ${
m CH_4}$ при осушении органогенных почв земель, переведенных в пахотные земли, равны:

Frac ditch=0.5;

$$\mathrm{EF}_{_\mathrm{land}}$$
 =0,0 CH_4 кг га $^{-1}$ год $^{-1}$;

$$\mathrm{EF}_{\mathrm{ditch}}$$
=1165 CH_{4} кг га $^{-1}$ год $^{-1}$.

Средний запас биомассы на пахотных землях составляет 1,52 \pm 0,5 тонн С га $^{-1}$ для травянистых растений и 63 тонн С га $^{-1}$ для многолетних насаждений.

Значение коэффициента ($\mathbb{C}_{\mathbf{f}}$) сгорания равно 0,9 для однолетних культур, 0,43 для верхового пожара и 0,15 для низового пожара на территории многолетних насаждений.

Таблица 26.8. Начальные средние величины запасов углерода в различных пулах лесных земель, переведенных в пахотные, тонн C га⁻¹

Начальный запас (до конверсии), тонн C га ⁻¹				
надземная биомасса подземная мертвое подстилка почва биомасса органическое вещество				
Покрытые лесом земли				
36,8	9,9	9,3	8,5	96,9

Земли, покрытые кустарниковой растительностью				
5,6 10,1 3,4 3,8 144,0				

Таблица 26.9. Начальные средние запасы углерода биомассы, мертвого органического вещества и почвы по категориям земель, тонн С га $^{-1}$

Пул углерода	Средний запас углерода, тонн C га ⁻¹			
Биомасса, среднее по Российской Федерации	7,16±3,1			
- бореальная зона	8,28±5,4			
- суббореальная зона	6,03±3,3			
Мертвое органическое вещество, среднее по Российской Федерации	5,92±2,6			
- бореальная зона	4,48±2,4			
- суббореальная зона	7,36±4,7			
Почва	88,4±40,5			
Водно-болотные угодь	я			
Биомасса, среднее по Российской Федерации	12,9±5,2			
- полярная зона	10,3±4,1			
- бореальная зона	18,5±20,1			
- суббореальная зона	8,1±3,7			
- зона северных пустынь	14,7±1,9			
Мертвое органическое вещество, среднее по Российской Федерации	22,1±2,9			
- полярная зона	27,3±8,1			
- бореальная зона	31,3±1,3			
- суббореальная зона	25,6±7,8			
- зона северных пустынь	4,1±1,1			
Почва	-			
Поселения				
Биомасса	0,85±0,2			
Мертвое органическое вещество	0			
Почва	71,67±25,1			

Прочие земли		
Биомасса	0	
Мертвое органическое вещество	0	
Почва	0	

Пул углерода подстилки характерен только для лесных земель. Следует использовать уточненные региональные значения запаса углерода в пуле подстилки других категорий земель.

Таблица 27. Конечные средние запасы углерода биомассы, мертвого органического вещества и почвы, земель, переведенных в пахотные, тонн С га⁻¹

Пул углерода	Средний запас углерода, тонн C га $^{-1}$	
Пахотные земли		
Биомасса	1,52±0,5	
Мертвое органическое вещество	0	
Почва	55,65±19,5	

- 10. Расчет объема поглощений парниковых газов сельскохозяйственными угодьями (в части сенокосов и пастбищ)
 - 10.1. Изменения запасов углерода

Оценка изменения в запасах почвенного органического углерода в минеральных почвах:

$$\Delta C_{\textit{минеральные}} = (Cplant + Cmanure) - (Cresp + Cerosion + Chey + Cfeed + Cgreen) \ (96)$$

где:

 $\Delta C_{\it минеральные}$ - изменения запасов углерода в пуле почвенного органического углерода в минеральных почвах, тонн С год $^{-1}$;

Cplant - поглощение углерода при фотосинтезе, тонн С rog^{-1} ;

Cmanure - поступление углерода в почвы с навозом и пометом пастбищных животных и птицы, тонн C rog^{-1} ;

Cresp - потери почвенного С с дыханием почв, тонн С rog^{-1} ;

Cerosion - механические потери почвенного С в результате эрозии и дефляции, тонн С год $^{-1}$;

Chey - вынос C с биомассой при сенокошении, тонн C год $^{-1}$;

Cfeed - вынос C с биомассой при потреблении пастбищных кормов животными на пастбищах, тонн C rog^{-1} ;

Cgreen - вынос C с биомассой при заготовке зеленых кормов, тонн C rog^{-1} .

Оценка поступления фотосинтетически связанного за год углерода и нетто-продуктивности экосистем для сельскохозяйственных угодий (в части сенокосов и пастбищ) (далее - кормовые угодья):

Cplant=A*Caкк (97)

где:

Cplant - поглощение углерода при фотосинтезе, тонн С rog^{-1} ;

А - площадь кормовых угодий, га;

Сакк - коэффициент поглощения углерода при фотосинтезе, тонн С га $^{-1}$ год $^{-1}$.

Поступление углерода в почвы кормовых угодий с навозом пастбищных животных и птицы:

$$Cmanure = \sum_{i} \left[LV_{i} * \left(EF_{excretion} \ C_{i} - EF_{CH4} \ i * 12/16 - EF_{CO2} \ i * 12/44 \right) * Time_{i} / 100 \right] (98)$$

где:

Cmanure - поступление углерода в почвы с навозом и пометом пастбищных животных и птицы, тонн С roz^{-1} :

 ${\rm LV_i}$ - поголовье пастбищных животных (численность птицы на выгонах) категории і, голов год $^{-1}$:

 $EF_{excretion_C_i}$ - коэффициент экскреции углерода пастбищными животными и птицей категории i, кг C голова $^{-1}$ год $^{-1}$;

 ${
m EF_{CH4_i}}$ - коэффициент эмиссии ${
m CH_4}$ от навоза пастбищных животных и птицы категории і, кг ${
m CH_4}$ голова $^{-1}$ год $^{-1}$;

 $Time_{i}$ - доля годового времени, проводимого животными и птицей категории і на пастбищах и выгонах, %;

 ${\rm EF_{CO2_i}}$ - коэффициент эмиссии ${\rm CO_2}$ от навоза пастбищных животных и птицы категории і, кг ${\rm CO_2}$ голова $^{-1}$ год $^{-1}$;

12/16 и 12/44 - коэффициенты пересчета из единиц ${
m CH_4}$ и ${
m CO_2}$ в углерод, не имеет размерности.

Общий вынос углерода с территории кормовых угодий рассматривается по следующим составляющим: механические потери углерода с дефляцией и эрозией почвы, вынос углерода биомассы при покосе, потреблении пастбищных кормов сельскохозяйственными животными и заготовке зеленых кормов, а также потери углерода почв при их дыхании.

Оценка средних потерь органического углерода в результате эрозии и дефляции на землях пастбищ и сенокосов осуществляется по формуле (99):

Cerosion=A*EFerosion (99)

Cerosion - механические потери почвенного С в результате эрозии и дефляции, тонн С год $^{-1}$;

А - площадь кормовых угодий, га;

EFerosion - коэффициент потерь углерода при эрозии и дефляции почв, тонн С га $^{-1}$ год $^{-1}$.

Вынос углерода растительной биомассы с территории сенокосов и пастбищ осуществляется по формуле (100):

Chey=Yhey*45/100 (100)

где:

Chey - вынос C с биомассой при сенокошении, тонн C год -1;

Yhey - валовой сбор сена, тонн сух. в-ва год $^{-1}$.

Расчета количества углерода биомассы растений, потребляемой животными при выпасе осуществляется по формуле (101):

Cfeed=(PASTUREfeed/0,85)*45/100 (101)

где:

Cfeed - вынос C с биомассой при потреблении пастбищных кормов животными на пастбищах, тонн C rog^{-1} ;

PASTUREfeed - общее потребление пастбищных кормов всеми категориями пастбищных животных и птицы, тонн кормовых единиц год $^{-1}$.

Заготовка зеленого корма, силоса и сена на территории культурных пастбищ осуществляется по формуле (102):

Cgreen=Ygreen*45/100 (102)

где:

Cgreen - вынос C с биомассой при заготовке зеленых кормов, тонн C rog^{-1} ;

Ygreen - валовой сбор зеленого корма, силоса и сена на пастбищах, тонн сух. в-ва год $^{-1}$.

Расчет потерь почвенного С с дыханием почв, тонн С rog^{-1} осуществляется по формуле (103):

$$Cresp = \sum_{i} (Area_i * AC_{CO2} * Veg_i * 0.55*100 / Cs_i) * 12/44 (103)$$

Cs=-2.7·TB+59,7 (104)

где:

Cresp - потери почвенного С с дыханием почв, тонн С rog^{-1} ;

Атеа_і - площадь кормовых угодий субъекта РФ і, га;

 ${
m AC_{CO2}}$ - средний коэффициент по дыханию почв сенокосов и пастбищ (кормовых угодий), мг ${
m CO_2}\,{
m M}^{-2}\,$ час $^{-1}$;

 Veg_i - продолжительность вегетационного периода в данном субъекте і, часы;

0,55 - коэффициент для исключения дыхания корней (45%), не имеет размерности;

 Cs_i - вклад летнего дыхания почв в годовой поток, %;

Тв - среднегодовая температура воздуха, °С.

12/44 - коэффициенты для пересчета из единиц CO_2 в углерод.

10.2. Выбросы ${\rm CO}_2$ и иных парниковых газов, кроме ${\rm CO}_2$, от осушения органогенных почв кормовых угодий.

Расчет выбросов CO_2 от осущенных органогенных почв кормовых угодий осуществляется по формуле (105):

$$CO_2$$
_organic = A *EF *44/12(105)

где:

 ${
m CO}_2$ _organic - выбросы ${
m CO}_2$ от осушенных органогенных почв кормовых угодий, тонн ${
m CO}_2$;

А - площадь осушенных органогенных почв кормовых угодий, га;

EF - коэффициент выброса ${\rm CO}_2$ от осушенных органогенных почв кормовых угодий, тонн C га $^{-1}$ год $^{-1}$.

Расчет выбросов $N_2\mathbb{O}$ от осушенных органогенных почв кормовых угодий, кг $N_2\mathbb{O}$ осуществляется по формуле (106):

$$N_2O_{organic} = A*EF_{N-N2O}*44/28$$
 (106)

где:

 ${
m N_2O_organic}$ - выбросы ${
m N_2O}$ от осушенных органогенных почв кормовых угодий, кг ${
m N_2O}$;

А - площадь осушенных органогенных почв кормовых угодий, га;

 ${\rm EF_{N_N2O}}$ - коэффициент выброса ${\rm N_2O}$ от осушенных органогенных почв кормовых угодий, кг N- ${\rm N_2O}$ га $^{-1}$ год $^{-1}$.

Оценка выбросов метана от осушенных органогенных почв кормовых угодий (107):

где:

 CH_4 _organic - выбросы метана, кг CH_4 ;

А - площадь осушенных органогенных почв кормовых угодий, га;

Frac ditch - доля общей площади под осушительными каналами, не имеет размерности;

 ${
m EF}_{_{
m land}}$ - коэффициент выбросов для участков, не занятых осушительными каналами, кг ${
m CH}_{\it d}$ га $^{-1}$ год $^{-1}$;

 ${
m EF}_{
m ditch}$ - коэффициент выбросов для осушительных канав, кг ${
m CH_4}$ га $^{-1}$ год $^{-1}$

10.3. Выбросы парниковых газов от пожаров.

Оценка выбросов парниковых газов от пожаров проводятся по формуле (108):

$$L_{\text{mowap}} = A * MB * C_f * G_{ef} * 10^{-3} (108)$$

где:

А - площадь, пройденная пожаром, га;

 ${
m MB}$ *C $_{
m f}$ - произведение массы доступного для горения топлива и коэффициента сгорания = потребление топливной массы (мертвое органическое вещество плюс живая биомасса) при пожаре, тонн сухого вещества га $^{-1}$;

 $G_{\rm ef}$ - коэффициент выбросов; г кг $^{-1}$ сжигаемого сухого вещества.

10.4. Пересчетные коэффициенты.

Коэффициенты приведены в таблицах 27.1-19.

Коэффициент выброса CO_2 при осушении органогенных почв кормовых угодий EF равен 5,82 тонн С га $^{-1}$ год $^{-1}$.

Коэффициент выброса $N_2 \odot$ при осушении органогенных почв кормовых угодий EF равен 9,5±4,9 кг N- $N_2 \odot$ га $^{-1}$ год $^{-1}$.

Коэффициенты для расчета выброса ${
m CH_4}$ при осушении органогенных почв кормовых угодий равны:

Frac_ditch=0,05;

$$\mathrm{EF}_{_\mathrm{land}}$$
 =1,4 CH_4 кг га $^{-1}$ год $^{-1}$;

$$\mathrm{EF}_{\mathrm{ditch}}$$
 =43,63 $\mathrm{CH}_{\mathrm{4}}\,\mathrm{Kr}\,\mathrm{ra}^{-1}\,\mathrm{год}^{-1}$.

Среднее значение произведение массы доступного для горения топлива и коэффициента сгорания $M\!B^*\!C_f$ принимается равным 10,0 тонн сухого вещества га $^{-1}$.

Таблица 27.1. Коэффициенты для оценки поступления углерода с навозом и пометом пастбищных животных и птицы

животных и птицы	углерода на пастбищах, кг С голова ⁻¹ год ⁻¹	выброса ${ m CH_4}$, кг голова $^{-1}$ год $^{-1}$	выброса ${\rm CO}_2$, кг голова $^{-1}$ год $^{-1}$	времени, проводимого на пастбищах, %
Коровы	244,6	5,07	3,38	19,2
Крупный рогатый скот (без коров)	115,9	3,04	2,02	24,8
Овцы	36,9	0,19	0,13	18,4
Козы	23,3	0,13	0,09	18,4
Верблюды	156,2	1,58	1,05	18,4
Лошади	156.6	1,56	1,04	18,4
Мулы	85,5	0,76	0,51	18,4
Ослы	85,5	0,76	0,51	18,4
Птица				
мясные куры	0,8	0,02	0,01	6,5
куры-несушки	0,5	0,03	0,02	6,5
цыплята	0,4	0,02	0,01	6,5
гуси	1,0	0,02	0,01	6,5
гусята	0,7	0,02	0,01	6,5
другая взрослая птица	1,0	0,045	0,03	6,5
молодняк другой птицы	0,8	0,02	0,01	6,5
Северные олени	36,3	0,369	0,25	18,4

Таблица 27.2. Средние значения дыхания разных типов почв луговых биоценозов

Почва	Эмиссия ${\rm CO}_2$, мг ${\rm CO}_2$ ·м $^{-2}$ ·час $^{-1}$
среднее по луговым биоценозам	445
дерново-подзолистая	200
торфяная	937
дерново-подзолистая	280
мерзлотно-лугово-черноземная	600
дерново-подзолистая и серая лесная оподзоленная	500
серая лесная осолоделая суглинистая и дерново-карбонатная, суглинистая	385

дерново-подзолистая супесчаная, дерново-перегнойная суглинистая и перегнойно-поверхностно-глеевая осолоделая	215
чернозем (сенокос)	280
чернозем обыкновенный	359
дерново-слабоподзолистая песчаная (сенокос)	512
серая лесная	342
Среднее значение	421

Таблица 27.3. Средние значения длительности вегетационного периода, среднегодовых температур и вклада летней эмиссии $\, ^{\rm CO}_2 \,$ в годовую на луговых биоценозах субъектов Российской Федерации

Субъекты Российской Федерации	Длительность Вегетационного периода, месяц	Длительность вегетационного периода, час	Среднегодовая температура, °С	Вклад летней эмиссии в годовую, %
Республика Адыгея (Адыгея)	7,0	5124	11,29	29,22
Республика Алтай	5,0	3660	2,66	52,52
Республика Башкортостан	5,0	3660	3,01	51,57
Республика Бурятия	3,0	2196	-5,4	74,28
Республика Дагестан	7,0	5124	12,25	26,63
Республика Ингушетия	7,0	5124	12,25	26,63
Кабардино-Балкарская Республика	7,0	5124	12,25	26,63
Республика Калмыкия	6,0	4392	9,3	34,59
Карачаево-Черкесская Республика	6,0	4392	11,01	29,97
Республика Карелия	3,0	2196	-0,23	60,32
Республика Коми	3,5	2562	0,59	58,11
Республика Крым	7,0	5124	11,29	29,22
Республика Марий Эл	5,0	3660	3,38	50,57
Республика Мордовия	4,5	3294	4,18	48,43
Республика Саха (Якутия)	3,0	2196	-8,09	81,54
Республика Северная Осетия - Алания	7,0	5124	12,25	26,63
Республика Татарстан (Татарстан)	5,0	3660	3,81	49,41
Республика Тыва	5,0	3660	2,07	54,12

Удмуртская Республика	4,0	2928	1,92	54,52
Республика Хакасия	5,0	3660	1,475	55,72
Чеченская республика	7,0	5124	12,25	26,63
Чувашская Республика - Чувашия	5,0	3660	3,74	49,61
Алтайский край	5,0	3660	2,66	52,52
Забайкальский край	3,0	2196	-4,55	71,99
Камчатский край	2,3	1683,6	0,19	59,19
Краснодарский край	7,0	5124	11,29	29,22
Красноярский край	3,0	2196	-2,26	65,80
Пермский край	4,0	2928	1,92	54,52
Приморский край	4,0	2928	3,7	49,71
Ставропольский край	6,0	4392	9,49	34,08
Хабаровский край	4,0	2928	-2,06	65,26
Амурская область	3,5	2562	-3,02	67,85
Архангельская область	3,0	2196	0,11	59,40
Астраханская область	6,0	4392	9,95	32,84
Белгородская область	5,0	3660	5,87	43,85
Брянская область	5,0	3660	5,24	45,55
Владимирская область	5,0	3660	4,45	47,69
Волгоградская область	5,0	3660	7,6	39,18
Вологодская область	4,0	2928	2,3	53,49
Воронежская область	5,0	3660	6,08	43,28
Ивановская область	5,0	3660	4,45	47,69
Иркутская область	3,0	2196	-2,81	67,29
Калининградская область	5,0	3660	7,025	40,73
Калужская область	5,0	3660	4,825	46,67
Кемеровская область	4,0	2928	0,2	59,16
Кировская область	4,0	2928	2,32	53,44
Костромская область	4,0	2928	3,42	50,47
Курганская область	5,0	3660	1,95	54,44
Курская область	5,0	3660	5,66	44,42

Ленинградская область	5,0	3660	4,97	46,28
Липецкая область	5,0	3660	5,53	44,77
Магаданская область	1,5	1098	-4,14	70,88
Московская область	5,0	3660	4,975	46,27
Мурманская область	3,0	2196	-0,05	59,84
Нижегородская область	5,0	3660	4,02	48,85
Новгородская область	5,0	3660	4,3	48,09
Новосибирская область	4,5	3294	0,42	58,57
Омская область	3,5	2562	1,38	55,97
Оренбургская область	5,0	3660	4,69	47,04
Орловская область	5,0	3660	5,76	44,15
Пензенская область	5,0	3660	4,77	46,82
Псковская область	5,0	3660	5,025	46,13
Ростовская область	6,0	4392	9,68	33,56
Рязанская область	5,0	3660	5,17	45,74
Самарская область	5,0	3660	4,725	46,94
Саратовская область	5,0	3660	5,82	43,99
Сахалинская область	4,0	2928	1,34	56,08
Свердловская область	4,0	2928	2,26	53,60
Смоленская область	5,0	3660	5,03	46,12
Тамбовская область	5,0	3660	5,36	45,23
Тверская область	5,0	3660	4,43	47,74
Томская область	3,5	2562	0,15	59,30
Тульская область	5,0	3660	5,53	44,77
Тюменская область	3,5	2562	0,2	59,16
Ульяновская область	5,0	3660	4,65	47,16
Челябинская область	5,0	3660	2,98	51,66
Ярославская область	4,0	2928	3,42	50,47
г.Москва	5,0	3660	4,975	46,27
г.Санкт-Петербург	5,0	3660	4,97	46,28
г.Севастополь	7,0	5124	11,29	29,22

Еврейская автономная область	3,5	2562	-3,02	67,85
Ненецкий автономный округ	3,0	2196	-2,4	66,18
Ханты-Мансийский автономный округ - Югра	3,0	2196	-2,58	66,67
Чукотский автономный округ	0,7	512,4	-11,4	90,48
Ямало-Ненецкий автономный округ	2,0	1464	-6,5	77,25

Таблица 27.4. Коэффициенты выбросов основных парниковых газов для сжигания биомассы, г кг $^{-1}$ сжигаемого вещества (использовать как количественное значение для $G_{\rm ef}$)

Категория	CO ₂	СО	CH ₄	N ₂ O	NOx
Кормовые угодья	1613±95	65±20	2,3±0,9	0,21±0,10	3,9±2,4

- 11. Расчет объема поглощений парниковых газов земель, переведенных в кормовые угодья
- 11.1. Изменения запасов углерода
- 11.1.1. Пахотные земли, переведенные в кормовые угодья

Оценка изменения запаса углерода в биомассе пахотных земель, переведенных в сенокосы и пастбища осуществляется по формуле (109):

$$\Delta C_{\text{конверсия}_BIO} = \left(C_{\text{nocre}_BIO} - C_{\text{do}_BIO}\right) \times \Delta A_{\text{e}} \text{ кормовые} / D_{\text{(109)}}$$

где:

 $\Delta C_{\text{конверсия}_BIO}$ - изменение в запасах углерода в углеродном пуле биомассы на пахотных землях, переведенных в кормовые угодья; тонны С год $^{-1}$;

 $\mathrm{C}_{\mathtt{mocne_BIO}}$ - запасы углерода в углеродном пуле биомассы кормовых угодий; тонны С га $^{-1}$;

 $C_{\text{до_BIO}}$ - запасы углерода в углеродном пуле биомассы пахотных земель до перевода в кормовые угодья; тонны С га $^{-1}$;

 ΔA_{e} кормовые - площадь пахотных земель, переведенная в кормовые угодья в определенный год; га год $^{-1}$;

D - период времени, в течение которого происходят изменения запасов углерода в пулах в результате перевода земель в пахотные земли, лет (значение 20 лет).

Оценка изменения запаса углерода в мертвом органическом веществе пахотных земель, переведенных в сенокосы и пастбища осуществляется по формуле (110):

$$\Delta C_{\text{конверсия}_DOM} = (C_{\text{noche}_DOM} - C_{\partial o_DOM}) \times \Delta A_{\text{в кормовые}} / D_{\text{(110)}}$$

где:

 $\Delta C_{\text{консерсия}_DOM}$ - изменение в запасах углерода в углеродном пуле мертвого органического вещества на пахотных землях, переведенных в кормовые угодья; тонны С год $^{-1}$;

 $C_{\mathtt{после_DOM}}$ - запасы углерода в углеродном пуле мертвого органического вещества кормовых угодий; тонны C га $^{-1}$;

 $C_{\text{до_DOM}}$ - запасы углерода в углеродном пуле мертвого органического вещества пахотных земель до перевода в кормовые угодья; тонны С га $^{-1}$ (значение равно 0 тонн С га $^{-1}$);

 $\Delta A_{e \; \kappa opmosble}$ - площадь пахотных земель, переведенная в кормовые угодья в определенный год; га год $^{-1}$:

D - период времени, в течение которого происходят изменения запасов углерода в пулах в результате перевода земель в пахотные земли, лет (значение 20 лет).

Расчет накопления углерода в пуле почв пахотных земель, переведенных в кормовые угодья осуществляется по формуле (111):

$$\Delta C_{\text{конверсия}_\text{soil}} = \Delta A_{\text{в кормовые}} * C akk (111)$$

где:

 $\Delta C_{\it конверсия_soil}$ - изменение в запасах углерода в углеродном пуле почв на пахотных землях, переведенных в кормовые угодья; тонны С год $^{-1}$;

 $\Delta A_{e \ \kappa op moesile}$ - площадь пахотных земель, переведенных в кормовые угодья в определенный год; га год $^{-1}$;

Сакк - коэффициент аккумуляции углерода почв, тонн С га $^{-1}$ год $^{-1}$ (в течение первых 6 лет зарастания принимается равным 1,08 \pm 0,45 тонн С га $^{-1}$ год $^{-1}$).

Для лет после 6 года зарастания следует рассчитывать коэффициент Сакк по формуле 112:

$$C$$
 акж = 1,623 EXP $(-0.07 \cdot \text{число лет})$ (112)

где:

Сакк - коэффициент аккумуляции углерода почв, тонн С га $^{-1}$ год $^{-1}$;

число лет - порядковое число лет зарастания.

11.1.2. Другие категории земель, переведенные в кормовые угодья

Метод разницы запасов углерода в разных пулах:

$$\Delta C_{\text{koheepour}} = \sum_{i} (C_{\text{nocre} i} - C_{\partial o i}) \times \Delta A_{\epsilon \text{ kohmoesse}} / D_{(113)}$$

 $\Delta C_{\text{конберсия}}$ - изменение в запасах углерода в углеродных пулах (биомасса, мертвое органическое вещество, подстилка, почва) на землях, переведенных в кормовые угодья; тонны С год $^{-1}$:

 $C_{\mathtt{после}_i}$ - запасы углерода в углеродных пулах і (биомасса, мертвое органическое вещество, подстилка, почва) кормовых угодий; тонны С га $^{-1}$;

 $C_{{\tt ДO_i}}$ - запасы углерода в углеродных пулах і (биомасса, мертвое органическое вещество, подстилка, почва) в категориях земель до перевода; тонны С га $^{-1}$;

 $\triangle A_{\rm g}$ пахотивые - площадь категории земель, переведенных в кормовые угодья в определенный год; га год $^{-1}$ (включает все переведенные земли, как из управляемых, так и неуправляемых категорий);

D - период времени, в течение которого происходят изменения запасов углерода в пулах в результате перевода земель в кормовые угодья, лет (в первом приближении используется значение равное 1 году; далее используется значение 20 лет);

і - пул углерода: биомасса, мертвое органическое вещество, подстилка, почва.

11.2. Выбросы CO_2 и иных парниковых газов, кроме CO_2 , от осушения органогенных почв пахотных земель, переведенных в кормовые угодья.

Расчет выбросов CO_2 от осушенных органогенных почв пахотных земель, переведенных в кормовые угодья осуществляется по формуле (114):

$$CO_2$$
 organic = A *EF *44/12(114)

где:

 ${
m CO}_2$ -organic - выбросы ${
m CO}_2$ от осушенных органогенных почв пахотных земель, переведенных в кормовые угодья, тонн ${
m CO}_2$;

А - площадь осушенных органогенных почв пахотных земель, переведенных в кормовые угодья, га;

EF - коэффициент выброса CO_2 от осушенных органогенных почв пахотных земель, переведенных в кормовые угодья, тонн C га $^{-1}$ год $^{-1}$.

Расчет выбросов N_2 $^{\circ}$ от осушенных органогенных почв пахотных земель, переведенных в кормовые угодья осуществляется по формуле (115):

$$N_2O_{organic} = A*EF_{N-N2O}*44/28$$
 (115)

где:

 N_2 О_organic - выбросы N_2 О от осушенных органогенных почв пахотных земель, переведенных в кормовые угодья, кг N_2 О ;

А - площадь осушенных органогенных почв пахотных земель, переведенных в кормовые угодья, га;

 ${\rm EF_{N_N2O}}$ - коэффициент выброса ${\rm N_2O}$ от осушенных органогенных почв пахотных земель, переведенных в кормовые угодья, кг N- ${\rm N_2O}$ га $^{-1}$ год $^{-1}$.

Оценка выбросов метана от осушенных органогенных почв пахотных земель, переведенных в кормовые угодья осуществляется по формуле (116):

где:

 CH_4 _organic - выбросы метана, кг CH_4 ;

А - площадь осушенных органогенных почв пахотных земель, переведенных в кормовые угодья, га;

Frac ditch - доля общей площади под осушительными каналами, не имеет размерности;

 ${
m EF}_{_{
m land}}$ - коэффициент выбросов для участков, не занятых осушительными каналами, кг ${
m CH}_{4}$ га $^{-1}$ год $^{-1}$;

 ${
m EF}_{_ditch}$ - коэффициент выбросов для осушительных канав, кг ${
m CH}_4$ га $^{-1}$ год $^{-1}$.

11.3. Оценка выбросов парниковых газов от пожаров осуществляется по формуле (117):

$$L_{\text{mowap}} = A * MB * C_f * G_{ef} * 10^{-3} (117)$$

где:

Lпожар - количество выбросов от пожара, тонн каждого парникового газа, например, ${\rm CO_2}$, ${\rm CH_4},~{\rm N_2O}$ и так далее;

А - площадь, пройденная пожаром, га;

 $MB*C_{f}$ - произведение массы доступного для горения топлива и коэффициента сгорания;

 $G_{\rm ef}$ - коэффициент выбросов; г кг $^{-1}$ сжигаемого сухого вещества.

11.4. Пересчетные коэффициенты.

Коэффициенты представлены в таблицах 27.4-27.6.

Коэффициент выброса ${\rm CO}_2$ при осушении органогенных почв земель переведенных в кормовые угодья EF равен 5,82 тонн C га $^{-1}$ год $^{-1}$.

Коэффициент выброса $N_2 \odot$ при осушении органогенных почв земель переведенных в кормовые угодья EF равен 9,5±4,9 кг N- $N_2 \odot$ га $^{-1}$ год $^{-1}$.

Коэффициенты для расчета выброса ${
m CH_4}$ при осушении органогенных почв земель, переведенных в кормовые угодья:

Frac ditch=0,05;

$$\mathrm{EF}_{\mathrm{land}}$$
 =1,4 CH_{4} кг га $^{-1}$ год $^{-1}$;

$${\rm EF}_{\rm ditch}$$
 =43,63 ${\rm CH}_4\,{\rm Kr}\,{\rm ra}^{-1}$ год $^{-1}$.

Среднее значение произведение массы доступного для горения топлива и коэффициента сгорания $M\!B^*\!C_f$ принимается равным 10,0 тонн сухого вещества га $^{-1}$.

Таблица 27.5. Средние запасы биомассы и мертвого органического вещества луговых ценозов Российской Федерации

Показатель	Бореальная зона	Суббореальная зона	Среднее
Запасы общей биомассы, тонн сух. в-ва/га	18,4	13,4	15,9
Запасы углерода биомассы, тонн С/га	8,28	6,03	7,16
Неопределенность запаса углерода биомассы, ± 🤊 %	± 64,6	±54,4	±43,8
Запасы мертвого органического вещества, тонн сух. в-ва/га	11,2	18,4	14,8
Запасы углерода мертвого органического вещества, тонн С/га	4,48	7,36	5,92
Неопределенность запаса углерода мертвого органического вещества, ± σ %	±52,9	±63,2	±44,1
Запасы углерода почв, тонн С/га			88,40
Неопределенность запаса углерода почв, ±の %			±45,81

Таблица 27.6. Начальные средние запасы углерода биомассы, мертвого органического вещества и почвы по категориям земель, тонн C га $^{-1}$

Пул углерода	Средний запас углерода, тонн C га $^{-1}$	
Водно-болотные угоды	я	
Биомасса, среднее по Российской Федерации	12,9±5,2	
- полярная зона	10,3±4,1	
- бореальная зона	18,5±20,1	
- суббореальная зона	8,1±3,7	
- зона северных пустынь	14,7±1,9	
Мертвое органическое вещество, среднее по Российской Федерации	22,1±2,9	
- полярная зона	27,3±8,1	
- бореальная зона	31,3±1,3	

- суббореальная зона	25,6±7,8	
- зона северных пустынь	4,1±1,1	
Почва	-	
Поселения		
Биомасса	0,85±0,2	
Мертвое органическое вещество	0	
Почва	71,67±25,1	
Прочие земли		
Биомасса	0	
Мертвое органическое вещество	0	
Почва	0	

Пул углерода подстилки характерен только для лесных земель, в пуле подстилки других категорий земель следует использовать уточненные региональные значения запаса углерода.

- 12. Расчет объема поглощений парниковых газов водно-болотными угодьями
- 12.1. Расчет выбросов CO_2 и иных парниковых газов, кроме CO2, от осушения органогенных почв водно-болотных угодий проводится по формуле (118):

$$CO_{2 \text{ organic}} = A *EF *44/12 (118)$$

где:

$$CO_2$$
_organic - выбросы CO_2 , тонн;

А - площадь торфоразработок на водно-болотных угодьях, га;

EF - коэффициент эмиссии $\ensuremath{\text{CO}}_2$, тонн C га $^{-1}$ год $^{-1}$.

Выбросы $N_2 O$ рассчитываются на основе тех же исходных данных по площадям торфоразработок, как и при оценке выброса CO_2 по формуле (119):

$$N_2O_{\text{organic}} = A * EF_{N_N2O} * 44/28 (119)$$

где:

 N_2 О_organic - выбросы N_2 О от осушенных органогенных почв земель, переведенных в кормовые угодья, кг N_2 О ;

А - площадь торфоразработок на водно-болотных угодьях, га;

 ${\rm EF_{N_N2O}}$ - коэффициент выброса ${\rm N_2O}$ при торфоразработках, кг N- ${\rm N_2O}$ га $^{-1}$ год $^{-1}$.

Выбросы ${
m CH_4}$ оцениваются в соответствии с формулой (120):

CH₄_organic = A *(1-Frac_{ditch}) *EF_{land} + A *Frac_{ditch} *EF_{ditch} (120)

где:

 CH_{4} _organic - выбросы метана, кг CH_{4} ;

А - площадь торфоразработок на водно-болотных угодьях, га;

Frac ditch - доля общей площади под осушительными каналами, не имеет размерности;

 ${
m EF}_{_{
m land}}$ - коэффициент выбросов для участков, не занятых осушительными каналами, кг ${
m CH}_{\it d}$ га $^{-1}$ год $^{-1}$;

 ${
m EF}_{
m ditch}$ - коэффициент выбросов для осушительных канав, кг ${
m CH_4}$ га $^{-1}$ год $^{-1}$.

12.2. Выбросы парниковых газов от пожаров.

Выбросы CO_2 и CH_4 от торфяных пожаров рассчитываются по формуле (121):

$$L_{\text{fire}} = A * MB * Cf * Gef * 10^{-3} (121)$$

где:

 L_{fire} - количество выбросов парникового газа (${\rm CO_2}$, ${\rm CH_4}$) от торфяных пожаров, тонн парникового газа;

А - общая площадь пожара, га;

MB - масса доступного для сжигания топлива, тонн га $^{-1}$;

Cf - коэффициент сгорания, не имеет размерности;

Gef - коэффициент эмиссии для каждого газа, г кг $^{-1}$ сгоревшего сухого вещества.

12.3. Пересчетные коэффициенты

Коэффициент выброса CO_2 при осушении торфяников EF равен 2,92 тонн C га $^{-1}$ год $^{-1}$.

Для расчетов выброса N_2 при торфоразработках используется коэффициент по умолчанию для торфоразработок бореальной и умеренной зон, который составляет 0,3 кг N- N_2 га $^{-1}$ год $^{-1}$.

Для оценки выброса CH_4 используют следующие коэффициенты:

Frac
$$_{ditch} = 0.05$$
;

$$\mathrm{EF}_{_\mathrm{land}}$$
 =6,1 кг CH_4 га $^{-1}$ год $^{-1}$;

$$\mathrm{EF}_{\mathrm{ditch}}$$
 =542 кг CH_{4} га $^{-1}$ год $^{-1}$.

Масса доступного для сжигания топлива (MB) по умолчанию равна 66 тонн га $^{-1}$ для

неосушенных торфяников и 336 тонн га $^{-1}$ для осушенных торфяников.

Коэффициент сгорания (Cf) по умолчанию равен 1.

Значения коэффициента эмиссии для каждого газа (Gef) принимаются равными:

для
$$CO_2$$
: Gef=362 г С кг $^{-1}$ или 1327,3 г CO_2 кг $^{-1}$;

для CH_4 : Gef=9 г CH_4 кг $^{-1}$ сгоревшего сухого вещества.

- 13. Расчет объема поглощений парниковых газов при обводнении ранее осушенных органогенных почв водно-болотных угодий
- 13.1. Выбросы CO_2 и иных парниковых газов, кроме CO_2 , при обводнении ранее осушенных органогенных почв водно-болотных угодий.

При обводнении ранее осушенных водно-болотных угодий оцениваются потоки следующих парниковых газов: CO_2 , CH_4 , N_2O .

Поглощение или выброс CO_2 рассчитывается по формулам (122-124):

$$CO_2$$
 rewetted = $(CO_2 - C_{composite} + CO_2 - C_{DOC})*44/12$ (122)

$$CO_2 - C_{composite} = A_{rewetted} *EF_{CO2-C}$$
 (123)

$$CO_2 - C_{DOC} = A_{rewetted} * EF_{DOC} rewetted (124)$$

где:

 ${
m CO}_{2_{
m rewetted}}$ - выбросы или поглощение ${
m CO}_2$ при обводнении водно-болотных угодий, тонн ${
m CO}_2$ год $^{-1}$;

 $CO_2-C_{composite}$ - поглощение CO_2 почвами и недревесной растительностью, тонн CO_2-C год $^{-1}$;

 ${
m CO}_2-{
m C}_{
m DOC}$ - выбросы ${
m CO}_2$ от растворенного органического вещества из обводненных торфяников, тонн ${
m CO}_2-{
m C}$ год ${
m CO}_3$

 $\mathbb{A}_{\text{rewetted}}$ - площадь обводненных ранее осушенных водно-болотных угодий, га;

 EF_{CO2-C} - коэффициент поглощения CO_2 почвами и недревесной растительностью, тонн CO_2-C га $^{-1}$ год $^{-1}$;

 ${\rm EF_{DOC_rewetbd}}$ - коэффициент выброса ${\rm CO_2}$ от растворенного органического вещества, вынесенного из обводненных торфяников, тонн ${\rm CO_2-C\,ra^{-1}}$ год $^{-1}$.

Ежегодные выбросы ${
m CH_4}$ от почв при обводнении ранее осушенных водно-болотных угодий оценивается по формуле (125):

$$CH_{4rewetted} = (A_{rewetted} *EF_{CH4-C} *16/12)/1000(125)$$

где:

 $\mathrm{CH}_{\mathrm{4rewetted}}$ - выбросы CH_{4} от почв при обводнении водно-болотных угодий, тонн CH_{4} год $^{-1}$;

A_{rewetted} - площадь обводненных ранее осушенных водно-болотных угодий, га;

 ${
m EF_{CH4-C}}$ - коэффициент выброса ${
m CH_4}$ от почв при обводнении водно-болотных угодий, кг ${
m CH_4-C}$ га $^{-1}$ год $^{-1}$.

При отсутствии специального значения коэффициента выброса N_2 О от почв при обводнении ранее осушенных водно-болотных угодий данные выбросы принимаются равными нулю. В случае наличия разработанного коэффициента (EF_{N2O-N}) применяется формула (126):

$$N_2O_{\text{rewetted}} = (A_{\text{rewetted}} *EF_{N2O-N} *44/28)/1000 (126)$$

где:

 $N_2 \bigcirc_{rewetted}$ - выбросы $N_2 \bigcirc$ от почв при обводнении водно-болотных угодий, тонн $N_2 \bigcirc$ год $^{-1}$;

 $\mathbb{A}_{\text{rewetted}}$ - площадь обводненных ранее осушенных водно-болотных угодий, га;

 ${\rm EF_{N2O-N}}$ - коэффициент выброса ${\rm N_2O}$ от почв при обводнении водно-болотных угодий, кг ${\rm N_2O}$ -N га $^{-1}$ год $^{-1}$.

13.2. Выбросы парниковых газов от пожаров.

Выбросы CO_2 и CH_4 от торфяных пожаров рассчитываются по формуле (127):

$$L_{\text{five}} = A * MB * Cf * Gef * 10^{-3} (127)$$

где:

 L_{fire} - количество выбросов парникового газа (CO_2 , CH_4) от торфяных пожаров, тонн парникового газа;

А - общая площадь пожара, га;

MB - масса доступного для сжигания топлива, тонн га $^{-1}$;

Cf - коэффициент сгорания, не имеет размерности (по умолчанию равен 1);

Gef - коэффициент эмиссии для каждого газа, г кг $^{-1}$ сгоревшего сухого вещества.

13.3. Пересчетные коэффициенты.

Значения коэффициентов:

 ${
m EF_{CO2-C}}$ =-0,34 тонн С га $^{-1}$ год $^{-1}$ - для бедных органическим веществом почв и -0,55 тонн С га $^{-1}$ год $^{-1}$ - для богатых органическим веществом почв при обводнении в бореальной зоне

(отрицательная величина означает, что этот поток является поглощением CO_2 из атмосферного воздуха).

 ${\rm EF_{DOC_rewetted}}$ =0,08 тонн С га $^{-1}$ год $^{-1}$ - для бореальной зоны (положительная величина означает, что этот поток является выбросов ${\rm CO_2}$ в атмосферный воздух).

Для оценки выброса $\,^{
m CH_4}$ при обводнении используют следующие коэффициенты $\,^{
m EF}_{
m CH4\,C}$ по умолчанию:

41 кг $\,{
m CH_4-C}\,$ га $^{-1}\,$ год $^{-1}\,$ - для бедных органическим веществом почв;

137 кг ${
m CH_4-C}$ га $^{-1}$ год $^{-1}$ - для богатых органическим веществом почв при обводнении в бореальной зоне.

Масса доступного для сжигания топлива (MB) по умолчанию равна 66 тонн га $^{-1}$ для обводненных торфяников.

Коэффициент сгорания (Cf) по умолчанию равен 1.

Значения коэффициента эмиссии для каждого газа (Gef) принимаются равными:

для
$$CO_2$$
: Gef=362 г С кг $^{-1}$ или 1327,3 г CO_2 кг $^{-1}$;

для ${
m CH_4}$: Gef =9 г ${
m CH_4}$ кг $^{-1}$ сгоревшего сухого вещества.

- 14. Расчет объема поглощений парниковых газов землями населенных пунктов
- 14.1. Изменения запасов углерода

Оценки изменений запасов углерода выполняют только для входящих в состав земель населенных пунктов городских лесов, для которых используют формулы (27-55).

14.2. Выбросы CO_2 и иных парниковых газов, кроме CO_2 , от осушения органогенных почв земель населенных пунктов.

Расчет проводится по формулам (128-130):

$$CO_{2}$$
_organic = A*EF*44/12(128)

где:

$$CO_2$$
_organic - выбросы CO_2 , тонны CO_2 ;

А - площадь осушенных торфяников на лесных землях (торфоразработок), га;

EF - коэффициент эмиссии, тонн C га $^{-1}$ год $^{-1}$.

$$N_2O_{\text{organic}} = A * EF * 44 / 28 (129)$$

где:

$$N_2$$
O_organic - выбросы N_2 O, кг N_2 O;

А - площадь осушенных торфяников на лесных землях (торфоразработок), га;

EF - коэффициент эмиссии, кг N га $^{-1}$ год $^{-1}$.

Выбросы СН₄ рассчитываются в соответствии с формулой (130):

где:

 CH_{4} organic - выбросы метана, кг CH_{4} ;

А - площадь торфоразработок, га;

Frac ditch - доля общей площади под осушительными каналами, не имеет размерности;

 ${
m EF}_{_{
m land}}$ - коэффициент выбросов для участков, не занятых осушительными каналами, кг ${
m CH}_{A}$ га $^{-1}$ год $^{-1}$;

 ${
m EF}_{
m ditch}$ - коэффициент выбросов для осушительных канав, кг ${
m CH_4}$ га $^{-1}$ год $^{-1}$.

14.3. Выбросы парниковых газов от пожаров.

В случае возникновения пожара на территории городских лесов, оценка выполняется по формуле (131):

$$L_{\text{mowap}} = A * MB * C_f * G_{ef} * 10^{-3} (131)$$

где:

А - площадь, пройденная пожаром, га;

MB - масса доступного для горения топлива (биомасса, подстилка и мертвая древесина), тонн га $^{-1}$. Средний запас биомассы, подстилки, мертвой древесины получается делением удвоенной суммы запасов углерода в биомассе, подстилке и мертвой древесины на площадь лесных земель;

 ${
m C_f}$ - коэффициент сгорания; не имеет размерности. Также используются значения 0,43 для верхового пожара и 0,15 для низового пожара в бореальных лесах;

 $G_{\rm ef}$ - коэффициент выбросов; г кг $^{-1}$ сжигаемого сухого вещества.

14.4. Пересчетные коэффициенты

Пересчетные коэффициенты для оценки изменений запасов углерода на территории входящих в состав земель населенных пунктов городских лесов приведены в таблицах 24.4-25.6.

Коэффициент среднего выброса углерода от осушенных торфянистых почв на территории городских лесов равен 0.71 тонн C га $^{-1}$ год $^{-1}$.

Коэффициент среднего выброса $N_2 \odot$ от осушенных торфянистых почв на территории городских лесов равен 1,71 кг N га $^{-1}$ год $^{-1}$.

Следует использовать следующие коэффициенты для оценки выброса ${
m CH_4}$ от осушенных торфянистых почв на территории городских лесов:

Frac_ditch=0,025;

$$EF_{land} = 4.5 CH_4 кг га^{-1} год^{-1};$$

$$EF_{ditch} = 217 CH_4 кг га^{-1} год^{-1}$$
.

Коэффициент среднего выброса углерода от осушенных торфянистых почв открытых нелесных земель поселений равен 5,82 тонн C га $^{-1}$ год $^{-1}$.

Коэффициент среднего выброса $N_2 \odot$ от осушенных торфянистых почв открытых нелесных земель равен 9,5±4,9 кг N- $N_2 \odot$ га $^{-1}$ год $^{-1}$.

Следует использовать следующие коэффициенты для оценки выброса ${
m CH_4}$ от осушенных торфянистых почв на открытых нелесных землях поселений:

Frac_ditch=0,05
$$CH_4$$
 кг га⁻¹ год⁻¹;

EF land =1,4
$$CH_4$$
 кг га $^{-1}$ год $^{-1}$.

EF_ditch=1165
$$CH_4$$
 кг га $^{-1}$ год $^{-1}$.

Для нелесных территорий земель поселений, на которых могут происходить процессы горения биомассы (открытые территории), среднее значение произведение массы доступного для горения топлива и коэффициента сгорания ($MB*C_f$) принимается равным 10,0 тонн сухого вещества га $^{-1}$.

Значения средних запасов биомассы и мертвого органического вещества луговых ценозов указаны в таблице 27.5.

- 15. Расчет объема поглощений парниковых газов землями, переведенными в земли населенных пунктов и в земли специального назначения
 - 15.1. Изменения запасов углерода
 - 15.1.1. Земли, переведенные в земли населенных пунктов и в земли специального назначения.

Расчет выполняется в соответствии с формулой (132):

$$\Delta C_{\textit{koneepcur}} = [(C_{\textit{nocne_soil}} - C_{\textit{do_soil}}) \times A_{\textit{parcial}} / D + (0 - C_{\textit{do_soil}}) \times A_{\textit{full}} D] + \\ + [(C_{\textit{nocne_bio}} - C_{\textit{do_bio}}) \times A_{\textit{parcial}} + (0 - C_{\textit{do_bio}}) \times A_{\textit{full}}] + [\sum_{i} (0 - C_{\textit{do_i}}) \times (A_{\textit{parcial}} + A_{\textit{full}})]$$

$$(132)$$

где:

 $\Delta C_{ extit{KOHBBPCUR}}$ - изменение в запасах углерода в углеродных пулах (биомасса, мертвое органическое вещество, подстилка, почва) на землях, переведенных в земли населенных пунктов, земли специального назначения; тонны С год $^{-1}$;

 $C_{\mathtt{mocme_soil}}$ - запасы углерода в пуле почв земель населенных пунктов под открытыми территориями; тонны C га $^{-1}$;

 $\mathrm{C}_{\mathtt{до}\ \mathtt{soil}}$ - запасы углерода в пуле почв земель до их перевода; тонны С га $^{-1}$;

 $C_{\mathtt{после_bio}}$ - запасы углерода в пуле биомассы земель населенных пунктов, специального назначения под открытыми территориями; тонны С га $^{-1}$;

 $C_{ t no_bio}$ - запасы углерода в пуле надземной и подземной биомассы земель до их перевода; тонны C га $^{-1}$:

 ${
m A}_{
m parcial}$ - площадь земель, переведенных в земли населенных пунктов, земли специального назначения под открытые территории в какой-либо определенный год; га год $^{-1}$;

 $C_{{\tt дo_i}}$ - запасы углерода в пулах углерода (мертвого органического вещества и подстилки) земель до их перевода; тонны C га $^{-1}$;

 \mathbb{A}_{full} - площадь земель, переведенная в земли населенных пунктов, земли специального назначения под территории твердого покрытия и строений в какой-либо определенный год; га год $^{-1}$;

D - период времени, в течение которого происходят изменения запасов углерода в пуле почв при их частичных потерях на открытых территориях в результате перевода в земли населенных пунктов, земли специального назначения.

і - пул углерода: мертвое органическое вещество, подстилка.

Следует включать оценки соответствующих выбросов и (или) поглощения парниковых газов почвами в результате конверсии данного года в отчетность в течение последовательных 20 лет.

15.1.2. Иные категории земель, переведенные в земли населенных пунктов, земли специального назначения

Расчет выполняется в соответствии с формулой (133):

$$\Delta C_{\textit{norme}_\textit{poil}} = [(C_{\textit{norme}_\textit{soil}} - C_{\textit{do}_\textit{soil}}) \times A_{\textit{parcial}} + (0 - C_{\textit{do}_\textit{soil}}) \times A_{\textit{full}}D] + \\ + [(C_{\textit{norme}_\textit{bio}} - C_{\textit{do}_\textit{bio}}) \times A_{\textit{parcial}} + (0 - C_{\textit{do}_\textit{bio}}) \times A_{\textit{full}}] + [\sum_{i} (0 - C_{\textit{do}_i}) \times (A_{\textit{parcial}} + A_{\textit{full}})]$$

$$(133)$$

где:

 $\Delta C_{\text{конверсия}}$ - изменение в запасах углерода в углеродных пулах (биомасса, мертвое органическое вещество, подстилка, почва) на землях, переведенных в земли населенных пунктов, земли специального назначения; тонны С год $^{-1}$;

 $C_{\mathtt{mocne_soil}}$ - запасы углерода в пуле почв земель населенных пунктов, специального назначения под открытыми территориями; тонны C га $^{-1}$;

 $\mathrm{C}_{\mathtt{дo}\ \mathtt{soil}}$ - запасы углерода в пуле почв земель до их перевода; тонны С га $^{-1}$;

 $C_{\mathtt{после_bio}}$ - запасы углерода в пуле биомассы земель населенных пунктов, специального назначения под открытыми территориями; тонны C га $^{-1}$:

 $\mathrm{C}_{\mathtt{дo_bio}}$ - запасы углерода в пуле биомассы земель до их перевода; тонны C га $^{-1}$;

 ${
m A}_{
m parcial}$ - площадь земель, переведенная в земли населенных пунктов, земли специального назначения под открытые территории в какой-либо определенный год; га год $^{-1}$;

 $\mathbb{C}_{\mathtt{до}_i}$ - запасы углерода в пулах углерода (мертвого органического вещества и подстилки) земель до их перевода; тонны C га $^{-1}$;

 \mathbb{A}_{full} - площадь земель, переведенных в земли населенных пунктов, земли специального назначения под территории твердого покрытия и строений в какой-либо определенный год; га год $^{-1}$;

- і пул углерода: мертвое органическое вещество, подстилка.
- 15.2. Выбросы CO_2 и иных парниковых газов, кроме CO_2 , от осушения органогенных почв земель, переведенных в земли населенных пунктов, земли специального назначения.

Расчет выполняется в соответствии с формулами (134-136):

$$CO_2$$
_organic = A*EF*44/12(134)

где:

 CO_2 _organic - выбросы CO_2 от осушенных органогенных почв земель, переведенных в земли населенных пунктов, земли специального назначения, тонн CO_2 ;

А - площадь осушенных органогенных почв земель, переведенных в земли населенных пунктов, земли специального назначения, га;

EF - коэффициент выброса CO_2 от осушенных органогенных почв земель, переведенных в земли населенных пунктов, земли специального назначения, тонн C га $^{-1}$ год $^{-1}$.

$$N_2O_{\text{organic}} = A * EF_{\text{N} N2O} * 44/28 (135)$$

где:

 N_2 О_organic - выбросы N_2 О от осушенных органогенных почв земель, переведенных в земли населенных пунктов, земли специального назначения, кг N_2 О;

А - площадь осушенных органогенных почв земель, переведенных в земли населенных пунктов, земли специального назначения, га;

 ${\rm EF_{N_N2O}}$ - коэффициент выброса ${\rm N_2O}$ от осушенных органогенных почв земель, переведенных в земли населенных пунктов, земли специального назначения, кг N- ${\rm N_2O}$ га $^{-1}$ год $^{-1}$.

Оценка выбросов метана от осушенных органогенных почв земель, переведенных в земли населенных пунктов, земли специального назначения, выполняется в соответствии с формулой (136):

где:

 CH_{4} _organic - выбросы метана, кг CH_{4} ;

A - площадь осушенных органогенных почв земель, переведенных в земли населенных пунктов, земли специального назначения, га;

Frac ditch - доля общей площади под осушительными каналами, не имеет размерности;

 ${
m EF}_{_{land}}$ - коэффициент выбросов для участков, не занятых осушительными каналами, кг ${
m CH}_{\it d}$ га $^{-1}$ год $^{-1}$;

 ${
m EF}_{
m ditch}$ - коэффициент выбросов для осушительных канав, кг ${
m CH_4}$ га $^{-1}$ год $^{-1}$.

15.3. Выбросы парниковых газов от пожаров.

Оценка прямых выбросов CO_2 и иных парниковых газов от пожаров выполняется по формуле (137):

$$L_{\text{mowap}} = A * MB * C_f * G_{ef} * 10^{-3} (137)$$

где:

А - площадь, пройденная пожаром, на открытых территориях земель, переведенных в земли населенных пунктов, земли специального назначения, га;

 ${
m MB}$ * ${
m C}_{
m f}$ - произведение массы доступного для горения топлива и коэффициента сгорания равно потреблению топливной массы (сумма мертвого органического вещества и живой биомассы) при пожаре, тонн сухого вещества га $^{-1}$;

 ${\rm G_{ef}}$ - коэффициент выбросов; г кг $^{-1}$ сжигаемого сухого вещества.

15.4. Пересчетные коэффициенты.

Коэффициенты представлены в таблицах 27.7-28.1.

Коэффициент среднего выброса углерода от осушенных торфянистых почв земель, переведенных в земли населенных пунктов, земли специального назначения равен 5,82 тонн С га $^{-1}$ год $^{-1}$.

Коэффициент среднего выброса $N_2 \odot$ от осушенных торфянистых почв равен 9,5±4,9 кг N- $N_2 \odot$ га $^{-1}$ год $^{-1}$.

Следует использовать следующие коэффициенты:

Frac_ditch=0,05
$$CH_4$$
 кг га $^{-1}$ год $^{-1}$;

EF_land=1,4
$$CH_4$$
 кг га $^{-1}$ год $^{-1}$.

EF_ditch=1165
$$CH_4$$
 кг га $^{-1}$ год $^{-1}$.

Среднее значение произведение массы доступного для горения топлива и коэффициента сгорания ($MB * C_f$) принимается равным 10,0 тонн сухого вещества га $^{-1}$.

Средние величины запасов углерода в различных пулах, используемые в расчетах потерь при обезлесении по субъектам в Российской Федерации, приведены в таблице 27.8.

Таблица 27.7. Коэффициенты выбросов основных парниковых газов для сжигания биомассы, г кг $^{-1}$ сжигаемого вещества (использовать как количественное значение для $G_{\rm ef}$)

Подкатегория	CO ₂	СО	CH ₄	N ₂ O	NOx
Городские леса	1569±131	107±37	4,7±1,9	0,26±0,07	3,0±1,4
Открытые нелесные территории	1613±95	65±20	2,3±0,9	0,21±0,10	3,9+2,4

Таблица 27.8. Средние величины запасов углерода в различных пулах, используемые в расчетах потерь при обезлесении по субъектам в Российской Федерации

Субъекты Российской Федерации	Российской Федерации											ый запас млях пений сле рсии), С га -1
		Покрыт	ые лесо	м земли		Зем		рытые ку тительно	-	ІКОВОЙ	почва при частичном окислении	
	надз. био- масса	подз. био- масса	мерт- вое орг. в-во	под- стилка	почва	надз. био- мас- са	подз. био- мас- са	мерт- вое орг. в-во	под- стил- ка	почва	для покры- тых лесом землях	для земель под кустар- нико- вой расти- тель- ностью
Республика Адыгея (Адыгея)	74,02	20,86	14,35	5,51	54,08	0,00	0,00	0,00	0,00	0,00	49,84	0,00
Республика Алтай	55,08	16,05	10,94	5,06	100,53	1,94	0,52	0,09	6,66	135,74	96,54	134,44
Республика Башкортостан	43,87	11,03	10,02	6,56	69,49	5,10	1,36	0,31	6,68	208,59	65,26	207,29
Республика Бурятия	37,09	7,33	9,73	6,47	93,24	7,27	11,07	4,05	3,92	140,64	88,75	139,34
Республика Дагестан	43,41	12,16	10,31	6,19	58,92	4,02	1,07	0,23	6,50	206,66	54,69	205,36
Республика Ингушетия	56,95	13,74	11,28	5,94	56,94	9,85	2,62	0,56	6,69	208,68	52,71	207,38

Кабардино- Балкарская Республика	66,75	16,61	11,96	5,74	57,22	9,40	2,50	1,63	6,04	201,65	52,98	200,35
Республика Калмыкия	17,76	5,13	2,75	5,54	50,41	2,33	0,62	0,13	6,63	208,09	46,18	206,79
Карачаево- Черкесская Республика	65,95	16,58	16,12	6,55	67,08	3,83	1,02	0,22	6,69	208,68	62,84	207,38
Республика Карелия	29,56	6,14	10,32	14,84	53,59	0,00	0,00	0,00	0,00	0,00	47,46	0,00
Республика Коми	29,68	7,78	8,81	15,54	106,84	0,01	0,00	0,00	6,07	112,71	99,60	111,41
Республика Крым	71,82	21,59	14,50	5,49	51,20	4,60	1,22	0,26	6,65	208,26	46,97	206,96
Республика Марий Эл	49,95	12,96	13,95	7,53	74,82	0,00	0,00	0,00	6,69	208,68	70,58	207,38
Республика Мордовия	52,63	14,68	13,26	6,66	70,07	0,00	0,00	0,00	0,00	0,00	65,84	0,00
Республика Саха (Якутия)	20,95	10,88	5,31	5,45	103,75	3,66	4,99	1,70	4,63	136,35	99,71	135,05
Республика Северная Осетия - Алания	82,99	19,97	15,54	5,64	53,05	5,75	1,53	0,64	6,18	203,16	48,81	201,86
Республика Татарстан (Татарстан)	49,83	13,90	11,69	6,46	66,90	4,99	1,33	0,31	6,57	207,40	62,67	206,10
Республика Тыва	44,82	11,98	9,05	4,77	125,39	4,48	1,19	0,50	5,74	152,93	121,81	151,63
Удмуртская Республика	50,18	13,33	14,98	8,19	76,85	0,00	0,00	0,00	0,00	0,00	72,62	0,00
Республика Хакасия	42,34	12,83	8,55	4,30	108,57	18,12	4,83	1,63	6,59	160,10	105,00	158,80
Чеченская Республика	61,36	15,48	12,29	5,58	53,89	8,62	2,30	0,49	6,52	206,91	49,66	205,61
Чувашская Республика - Чувашия	38,73	11,10	8,83	6,52	66,39	19,96	5,32	1,16	6,69	208,68	62,15	207,38
Алтайский край	41,56	10,81	12,33	6,23	93,06	4,31	1,15	0,23	6,65	135,71	89,07	134,41
Забайкальский край	34,18	6,36	8,06	6,19	98,15	7,34	9,05	3,38	4,03	140,05	93,66	138,75
Камчатский край	36,55	10,45	6,20	5,33	73,06	12,24	26,18	8,53	3,14	149,40	68,70	148,10
Краснодарский край	71,82	21,59	14,50	5,49	51,20	4,60	1,22	0,26	6,65	208,26	46,97	206,96

Красноярский край	39,43	8,60	8,56	6,40	102,41	1,25	0,43	0,22	5,96	130,87	97,92	129,57
Пермский край	42,54	10,31	13,34	11,91	66,13	0,00	0,00	0,00	0,00	0,00	60,00	0,00
Приморский край	46,61	13,55	9,85	5,44	120,54	17,59	36,01	12,42	1,96	154,75	116,91	153,45
Ставропольский край	43,20	12,99	9,47	5,51	50,40	2,52	0,67	0,23	5,38	194,36	46,17	193,06
Хабаровский край	36,47	7,54	7,66	6,95	97,29	12,70	24,29	8,23	2,02	154,35	92,94	153,05
Амурская область	32,62	5,89	6,36	6,05	91,46	7,25	12,76	4,33	3,61	142,11	87,10	140,81
Архангельская область	35,42	9,23	10,03	15,78	105,25	9,78	3,39	0,61	6,66	116,34	98,01	115,04
Астраханская область	24,95	6,11	4,90	6,30	58,00	3,64	0,97	0,30	6,60	207,72	53,77	206,42
Белгородская область	60,92	20,90	12,63	5,70	52,15	0,00	0,00	0,00	6,11	202,37	47,91	201,07
Брянская область	58,68	15,92	16,48	7,42	72,84	0,00	0,00	0,00	6,11	202,37	68,61	201,07
Владимирская область	52,75	13,95	15,29	7,61	74,58	0,00	0,00	0,00	0,00	0,00	70,35	0,00
Волгоградская область	26,06	8,78	5,74	5,89	54,80	5,53	1,47	0,32	6,67	208,50	50,56	207,20
Вологодская область	48,51	11,69	14,65	12,92	64,89	0,00	0,00	0,00	0,00	0,00	58,76	0,00
Воронежская область	58,22	17,69	14,56	6,32	57,53	4,45	1,18	0,28	6,69	208,68	53,30	207,38
Ивановская область	51,45	13,35	14,52	7,60	76,76	0,00	0,00	0,00	6,11	202,37	72,52	201,07
Иркутская область	50,14	11,30	12,36	6,23	103,42	8,96	16,39	5,83	3,19	148,12	98,93	146,82
Калининградска я область	61,25	16,41	14,38	7,11	69,08	0,00	0,00	0,00	0,00	0,00	64,85	0,00
Калужская область	60,00	15,40	14,95	6,93	76,80	0,00	0,00	0,00	0,00	0,00	72,57	0,00
Кемеровская область	34,70	9,13	8,62	5,80	93,98	7,20	1,92	0,96	5,81	129,67	89,99	128,37
Кировская область	46,43	11,28	14,68	12,67	64,77	3,80	1,32	0,00	6,69	136,03	58,65	134,73
Костромская область	48,89	12,70	13,90	7,58	77,01	0,00	0,00	0,00	0,00	0,00	72,78	0,00
Курганская область	40,40	10,75	10,27	6,56	78,41	3,41	0,91	0,53	5,22	192,66	74,18	191,36

Курская область	56,03	19,08	13,11	5,89	56,52	6,90	1,84	0,78	6,48	206,47	52,28	205,17
Ленинградская область	51,01	12,96	15,84	8,10	76,14	0,00	0,00	0,00	0,00	0,00	71,91	0,00
Липецкая область	62,51	19,75	16,29	6,69	62,65	0,00	0,00	0,00	6,57	207,42	58,42	206,12
Магаданская область	11,85	6,50	2,83	5,88	98,62	4,11	9,15	2,91	2,95	147,95	94,58	146,65
Московская область	64,78	16,96	18,75	7,68	76,53	0,00	0,00	0,00	0,00	0,00	72,30	0,00
Мурманская область	13,12	3,32	4,05	15,89	98,65	0,00	0,00	0,00	0,00	0,00	91,40	0,00
Нижегородская область	46,95	12,56	12,82	7,34	74,72	13,18	3,51	0,80	6,69	208,68	70,49	207,38
Новгородская область	49,23	12,24	13,12	7,30	75,93	4,40	1,17	0,65	6,24	203,85	71,70	202,55
Новосибирская область	33,55	8,42	7,88	6,25	100,34	3,72	0,99	0,15	6,63	135,52	96,35	134,22
Омская область	40,68	9,68	8,26	6,14	100,54	4,31	1,15	0,26	6,60	135,37	96,55	134,07
Оренбургская область	41,36	12,45	9,05	5,95	60,21	2,71	0,72	0,29	6,35	205,06	55,98	203,76
Орловская область	58,84	18,73	12,78	5,92	63,06	0,00	0,00	0,00	0,00	0,00	58,83	0,00
Пензенская область	52,59	14,94	13,34	6,51	67,54	3,45	0,92	0,21	6,69	208,68	63,31	207,38
Псковская область	45,45	11,44	12,48	7,34	74,66	0,00	0,00	0,00	0,00	0,00	70,42	0,00
Ростовская область	30,33	9,32	7,09	6,43	56,89	5,17	1,38	0,32	6,68	208,60	52,66	207,30
Рязанская область	54,94	14,60	14,56	7,01	72,34	5,75	1,53	0,36	6,69	208,68	68,11	207,38
Самарская область	42,74	13,33	10,23	5,99	61,59	4,76	1,27	0,30	6,69	208,68	57,36	207,38
Саратовская область	37,18	12,29	8,31	5,88	56,66	6,08	1,62	0,41	6,64	208,22	52,42	206,92
Сахалинская область	34,45	8,16	9,47	6,42	90,87	14,99	28,52	9,65	1,98	154,57	86,51	153,27
Свердловская область	46,73	11,32	14,00	13,34	67,87	0,00	0,00	0,00	6,69	136,03	61,74	134,73
Смоленская область	47,77	12,50	11,98	6,88	75,60	8,62	2,30	0,54	6,69	208,68	71,37	207,38
Тамбовская область	61,08	17,53	17,14	7,06	68,15	3,83	1,02	0,24	6,57	207,46	63,92	206,16

Тверская область	50,42	12,91	14,54	7,59	75,67	0,00	0,00	0,00	0,00	0,00	71,44	0,00
Томская область	41,85	11,15	9,35	5,93	104,20	4,65	1,24	0,18	6,37	133,71	100,21	132,41
Тульская область	66,66	19,69	13,70	6,07	65,09	0,00	0,00	0,00	0,00	0,00	60,86	0,00
Тюменская область	39,62	9,67	9,13	6,42	101,11	4,52	1,20	0,11	6,69	135,95	97,12	134,65
Ульяновская область	55,81	15,52	15,23	6,83	69,06	6,90	1,84	0,41	6,69	208,68	64,83	207,38
Челябинская область	45,37	11,91	11,71	6,79	76,79	4,02	1,07	0,25	6,65	208,32	72,56	207,02
Ярославская область	52,53	13,55	14,41	7,45	76,65	0,00	0,00	0,00	0,00	0,00	72,42	0,00
г.Москва	64,78	16,96	18,75	7,68	76,53	0,00	0,00	0,00	0,00	0,00	72,30	0,00
г.Санкт- Петербург	51,01	12,96	15,84	8,10	76,14	0,00	0,00	0,00	0,00	0,00	71,91	0,00
г.Севастополь	71,82	21,59	14,50	5,49	51,20	4,60	1,22	0,26	6,65	208,26	46,97	206,96
Еврейская автономная область	37,56	10,37	7,37	5,42	108,22	8,83	16,70	5,80	1,96	154,75	104,59	153,45
Ненецкий автономный округ	27,98	7,56	9,32	15,63	116,34	0,00	0,00	0,00	0,00	0,00	109,10	0,00
Ханты- Мансийский автономный округ - Югра	31,53	7,62	8,65	16,06	110,31	2,56	0,89	0,07	6,69	136,03	104,43	134,73
Чукотский автономный округ	9,12	4,75	2,24	5,89	97,87	2,73	4,29	1,40	3,08	147,18	93,83	145,88
Ямало- Ненецкий автономный округ	21,25	8,10	6,12	9,44	124,31	2,22	0,77	0,46	6,34	187,89	119,05	186,59

Таблица 27.9. Начальные средние запасы углерода биомассы, мертвого органического вещества и почвы по категориям земель, тонн С га $^{-1}$

Пул углерода	Средний запас углерода, тонн С га ⁻¹						
Пахотные земли							
Биомасса	1,52±0,5						

Мортмасса	0
Почва	55,65±19,5
Пастбища	
Биомасса, среднее по Российской Федерации	7,16±3,1
- бореальная зона	8,28±5,4
- суббореальная зона	6,03±3,3
Мертвое органическое вещество, среднее по Российской Федерации	5,92±2,6
- бореальная зона	4,48±2,4
- суббореальная зона	7,36±4,7
Почва	88,4±40,5
Водно-болотные угодья	1
Биомасса, среднее по Российской Федерации	12,9±5,2
- полярная зона	10,3±4,1
- бореальная зона	18,5±20,1
- суббореальная зона	8,1±3,7
- зона северных пустынь	14,7±1,9
Мертвое органическое вещество, среднее по Российской Федерации	22,1±2,9
- полярная зона	27,3±8,1
- бореальная зона	31,3±1,3
- суббореальная зона	25,6±7,8
- зона северных пустынь	4,1±1,1
Почва	-

Пул углерода подстилки характерен только для лесных земель. Следует использовать уточненные региональные значения запаса углерода в пуле подстилки других категорий земель.

Таблица 28. Конечные средние запасы углерода биомассы, мертвого органического вещества и почвы открытых территорий земель населенных пунктов, тонн С га $^{-1}$

Пул углерода	Средний запас углерода, тонн C га $^{-1}$			
Поселения				
Биомасса	0,85±0,2			
Мертвое органическое вещество	0			

Почва	71,67±25,1

Таблица 28.1. Коэффициенты выбросов основных парниковых газов для сжигания биомассы, г кг $^{-1}$ сжигаемого вещества (использовать как количественное значение для $G_{\rm ef}$)

	Подкатегория	CO ₂	СО	CH ₄	N ₂ O	NOx
O1	ткрытые нелесные территории	1613±95	65±20	2,3±0,9	0,21±0,10	3,9±2,4

- 16. Порядок осуществления сбора данных о деятельности, в результате осуществления которой происходит поглощение парниковых газов, определения коэффициентов поглощений и выбросов парниковых газов, выполнения расчетов и обработки результатов количественного определения объемов поглощения парниковых газов
- 16.1. Выполнение количественного определения объемов поглощения парниковых газов в секторе ЗИЗЛХ осуществляется с использованием официальной статистической информации Росстата, Росресстра, Рослесхоза.

Сведения по общим площадям угодий содержатся в Государственном (национальном) докладе о состоянии и использовании земель Российской Федерации, размещенном на официальном сайте Росреестра ⁴. Для оценки общего изменения площади сопоставляется площадь каждого вида угодий данного года с площадями, представленными для предыдущего года.

- ⁴ Сведения Росреестра размещены на сайте https://rosreestr.gov.ru/ в разделе "Государственный мониторинг земель", пункт "Состояние и использование земель".
- 16.2. Для выполнения количественной оценки поглощения парниковых газов следует ежегодно составлять матрицы перевода земель из одной категории в другую, в которых учитываются разделение на управляемые и неуправляемые земли. Каждая категория землепользования далее подразделяется на земли, остающиеся в той же категории (например, прочие земли, остающиеся прочими землями) и земли, переведенные из одной категории в другую (например, пахотные угодья, переведенные в лесные земли).

Матрицы перевода земель составляются на основе информации, находящейся во всеобщем доступе, содержащейся в докладах Росреестра и Рослесхоза, а также на основе натурных измерений с использованием данных дистанционного мониторинга и данных наземных измерений.

Пример шаблона матрицы перевода земель для заполнения представлен в таблице 24.1.

- 16.3. При выполнении количественного определения объемов поглощения парниковых газов на пахотных землях используется официальная статистическая информация по используемым в сельскохозяйственном производстве площадям: посевные площади, площади чистых паров и площади многолетних насаждений в сумме. Разница суммы используемых в сельском хозяйстве площадей с общей площадью пашни в стране (по данным Росреестра) позволяет оценить зарастающие (брошенные) пахотные угодья, переведенные в сенокосы и пастбища.
- 16.4. Для выполнения количественных оценок поглощения на кормовых угодьях выбираются площади угодий, используемые землепользователями для сельскохозяйственного производства.
- 16.5. Статистическая информация о площади осушенных органогенных почв содержится в отчетности по земельному фонду Российской Федерации, предоставляемой Росреестром по каждой категории земель.

В целях недопущения двойного учета одних и тех же площадей в разных категориях земель следует выполнять ежегодный расчет общей площади земель, включенных в расчет. Эта общая

площадь должна оставаться постоянной и соответствовать общей исследованной площади.

16.6. Статистическая информация о деятельности по лесным землям содержится в данных Росреестра и данных государственного лесного реестра (далее - ГЛР). Документированная информация подготавливается ежегодно органами государственной власти субъектов Российской Федерации путем свода данных ГЛР по субъекту Российской Федерации.

Для расчетов используются данные по площадям и запасам древесины. Информационным источником для оценки бюджета углерода лесов на региональном уровне являются материалы ГЛР.

- 16.7. Категории "покрытые лесом земли" и "не покрытые лесом земли" объединяются в категорию "лесные земли", то есть те земли, которые используются или могут быть использованы для выращивания леса.
- 16.8. Исходные данные о сельскохозяйственной деятельности на уровне предприятий и объектов, осуществляющих соответствующую деятельность, собираются на основе эмпирических обследований территории и включают данные по используемым и неиспользуемым площадям, количеству вносимых удобрений, поголовью скота и птицы, валовым сборам и посевным площадям культурных растений и так далее, на основе официальной статистической информации и проведения сельскохозяйственной переписи.

В случае наличия пробелов в ряду исходных данных за какой-либо год применяются методы интерполяции и экстраполяции данных. Интерполяция применяется в случае отсутствия в ряде одного или нескольких промежуточных значений. При этом находится среднее значение между двумя известными величинами. Экстраполяция применяется при нахождении отсутствующего значения для последнего года (лет). При этом находится аппроксимация известных данных за предыдущие годы по линейному тренду и получаются прогнозные величины по нему на следующий год. В более сложных случаях аппроксимация проводится по экспоненциальному или степенному тренду в зависимости от наблюдаемой тенденции в динамике исходных данных.

При наличии тесной корреляции отсутствующих данных о деятельности или пересчетных параметров с каким-либо другим статистическим показателем, величины по которому имеются в наличии используется метод оценки "по драйверу" (например, площади рубок коррелируются с официальной статистической информацией по объемам вывезенной заготовленной древесины).

16.9. При разработке специализированных значений для пересчетных параметров и коэффициентов поглощения и выбросов используются:

анализ научной и специализированной литературы;

проведение прямых измерений;

разработка средних коэффициентов на основе методов математического моделирования;

заимствование коэффициентов из специализированных международных источников.

Разработка коэффициентов выбросов и поглощения парниковых газов основывается на следующих принципах работы: определение приоритетов между коэффициентами, разработка стратегии получения доступа к данным, сбор и обработка данных.

База данных коэффициентов выбросов и поглощений парниковых газов (далее - БДКВ) представляет собой непрерывно пересматриваемый основанный на интернет-технологии форум информационного обмена по коэффициентам выбросов и поглощения и другим параметрам, относящимся к оценке выбросов или поглощений парниковых газов на национальном и региональном уровнях 5 .

⁵ База данных размещена на официальных сайтах МГЭИК http://ipcc.ch/index.htm, http://www.ipcc-nggip.iges.or.jp/, http://www.ipcc-nggip.iges.or.jp/EFDB/main.php в разделе "Отчеты".

^{16.10.} Выполнение расчетов и обработка результатов количественного определения объемов поглощения парниковых газов.

Для расчетов используется официальная статистическая информация по данному региону или субъекту Российской Федерации, материалы Государственного лесного реестра (Рослесхоз), данные государственного мониторинга земель (Росреестр).

Основу расчетов составляют данные по площадям управляемых земель, включая данные по изменениям в землепользовании при переводе земель из одной категории в другую.

Для обеспечения прозрачности методы расчетов и конверсионные коэффициенты документируются.

Следует учитывать все источники выбросов и поглощений парниковых газов, для которых разработаны соответствующие методы оценок в настоящей Методике.

- 16.11. Этапы работы при расчете объема поглощений парниковых газов:
- а) составление матрицы перевода земель по исследуемой территории за данный год (таблица 24.1);
- б) разделение земель на управляемые и неуправляемые и составление матрицы перевода земель в управляемые и неуправляемые категории;
- в) классификация земель по категориям земель (лесные земли, пахотные земли, кормовые угодья, водно-болотные угодья, земли населенных пунктов и прочие земли), по природно-климатическим условиям, типам почвы;
- г) сбор информации по методам ведения хозяйства на данной территории и об изменениях в методах ведения хозяйства в каждой категории земель, разбивка территории в соответствии со специфичными системами управления, установленными для каждого вида разрешенного использования земель в соответствии с данной категорией, если имеются соответствующие данные;
 - д) оценка выбросов и поглощения $\ \ \, \mathbb{CO}_2$ и других парниковых газов;
- е) оценка неопределенностей выполненных расчетов, а также ведение плана будущей работы по совершенствованию точности количественного определения объемов поглощения парниковых газов;
- ж) суммирование выбросов и поглощения ${\rm CO}_2$ и других парниковых газов за период отчетности для каждой категории источника по землепользованию. Выбросы иных, чем ${\rm CO}_2$, парниковых газов следует пересчитать в единицы ${\rm CO}_2$ эквивалента умножением на соответствующий потенциал глобального потепления (25 для метана и 298 для закиси азота);
 - з) включение итоговой информации в таблицы;
- и) документирование и архивирование информации, использованной при расчете объемов поглощений, в том числе данные о деятельности и другие исходные данные, коэффициенты выбросов и поглощения парниковых газов, документацию по источникам данных и метаданных, методы описаний и программное обеспечение или код моделей в дополнение к результатам для каждой категории источника;
- к) установление приоритетов для работы по расчету объема поглощений в следующем году (периоде), в частности, с целью улучшения полноты охвата оцениваемых категорий источников выбросов и поглотителей и повышения точности оценок.
- 17. Для неуправляемых земель заполняются значения только площадей, для значений изменения запасов углерода в пулах и поглощения и выбросов парниковых газов используется обозначение NA. Пересчет из единиц углерода в ${\rm CO}_2$ следует проводить по формуле (139) путем умножения изменений запасов углерода на -44/12. Обратный перевод из ${\rm CO}_2$ в единицы углерода выполняется по формуле (140).

$$CO_2 = \Delta C * (-44/12) (139)$$

$$\Delta C = CO_2 * (-12/44) (140)$$

где:

 CO_2 - поток CO_2 , тонн CO_2 ;

 $\triangle C$ - изменение запасов углерода, тонн C;

44/12 - пересчетный коэффициент, не имеет размерности.

Перевод углерода в CO_2 и обратно основывается на использовании соотношения молекулярных масс (44 для CO_2 и 12 для C).

Пересчет выбросов метана в ${\rm CO}_2$ -эквивалент проводят умножением на значение потенциала глобального потепления 25. Пересчет выбросов закиси азота в ${\rm CO}_2$ -эквивалент проводят умножением на значение потенциала глобального потепления 298. Расчеты проводятся по формуле 141.

$$CO_2 - \mathfrak{R}B = \Pi * \Pi \Pi \Pi (141)$$

где:

 ${\rm CO_2}$ – экв. - величина выбросов или поглощения иных парниковых газов, кроме ${\rm CO_2}$, в единицах ${\rm CO_2}$ эквивалента, тонн;

ПГ - величина выброса или поглощения иного парникового газа, кроме СО₂, тонн;

ПГП - потенциал глобального потепления данного парникового газа, не имеет размерности (25 для $\,^{
m CH}_4$; 298 для $\,^{
m N}_2$ O).

Для выполнения корректной оценки достигнутого увеличения поглощения или сокращения выброса парниковых газов в секторе ЗИЗЛХ за определенный период, оценивается разница между итоговой величиной поглощения и выброса парниковых газов в отчетный год с базовым уровнем. Базовый уровень является показателем объема поглощений и выбросов парниковых газов от определенной категории землепользования в случае отсутствия дополнительных мер по регуляции потоков парниковых газов и пулов углерода, то есть уровень поглощения и выбросов парниковых газов при ведении хозяйственной деятельности без изменений.

Для категорий земель, которые не переводились в другие категории за расчетный год, базовым считается уровень нетто-поглощения и выброса CO_2 – экв. в первый год, когда осуществлялся расчет поглощения выбросов парниковых газов, или в среднем за 5 лет до начала расчетного года. Для переведенных категорий земель базовый уровень принимается равным нулю.

18. Количественное определение объема выбросов и поглощения парниковых газов в природных экосистемах

Количественное определение объема выбросов и поглощения парниковых газов в природных экосистемах проводится по формуле (142) с использованием региональных коэффициентов для тундровых экосистем, болотных экосистем, пресноводных экосистем и степей (таблицы 28.2-28.5):

$$E = \left[\sum i(A*EFi)/1000\right] - \sum i(Bi)$$
, (142)

где E - объем выбросов или поглощения парниковых газов на территории определенной природной экосистемы, тонн; A - площадь данного типа природной экосистемы, га; EF - удельный объем выбросов или поглощения парникового газа і в данном типе природной экосистемы, кг/га (28.2-28.5); В - выбросы парникового газа і от пожаров, выпаса копытных животных, осушения заболоченных земель, определенные в соответствии с пунктами 6-15 Приложения N 3.

Если значения EF приведены в граммах на гектар, то предварительно коэффициент следует разделить на 1000.

Пересчет выбросов метана и закиси азота в СО_{2-эквивалент} проводят по формуле (143).

$$CO_{2-3KBHBalleht} = IIII * IIIIII$$
, (143)

где $CO_{2\text{-эквивалент}}$ - величина выбросов или поглощения иных парниковых газов, кроме CO_2 , в единицах $CO_{2\text{-эквивалента}}$, тонн; ПГ - величина выброса или поглощения иного парникового газа, кроме CO_2 , тонн; ПГП - потенциал глобального потепления данного парникового газа (не имеет размерности: 25 для CH_4 и 298 для N_2O).

Таблица 28.2. Коэффициенты выбросов (+) и поглощения (-) парниковых газов для различных типов тундровых экосистем по субъектам Российской Федерации

Субъекты Российской Федерации	Тип тундровых экосистем	Диоксид углерода, кг СО ₂ га−1 год−1	Метан, кг СН ₄ га−1 год−1	Закись азота, кг $ m N_2 {}^{\!$
Мурманская область	Горная полярная пустыня	-369	10	0
	Горная тундра	1227	62	0
	Южная тундра	2502	102	5
	Лесотундра	-8996	123	6
Архангельская	Полярная пустыня	-458	43	0
область и Ненецкий	Арктическая тундра	-2348	43	2
автономный округ	Горная тундра	180	62	0
	Типичная тундра	36	84	3
	Южная тундра	-1034	102	5
	Лесотундра	-37643	123	6
Республика Коми	Горная полярная пустыня	-195	10	0
	Горная тундра	-160	62	.0
	Типичная тундра	124	84	3
	Южная тундра	2004	102	5
	Лесотундра	-22201	123	6
Ямало-Ненецкий	Горная тундра	-962	62	0

	·			
автономный округ	Арктическая тундра	68	43	2
	Типичная тундра	526	84	3
	Южная тундра	307	102	5
	Лесотундра	-10039	123	6
Красноярский край	Полярная пустыня	-418	43	0
	Горная полярная пустыня	-369	10	0
	Горная тундра	-1485	62	0
	Арктическая тундра	-4	43	2
	Типичная тундра	-1216	84	3
	Южная тундра	350	102	5
	Лесотундра	-2792	123	6
Республика Саха	Полярная пустыня	-488	43	0
(Якутия)	Горная тундра	-423	62	0
	Арктическая тундра	58	43	2
	Типичная тундра	-636	84	3
	Южная тундра	-1160	102	5
	Лесотундра	-3370	123	6
	Дальневосточная типичная тундра	-517	84	3
Чукотский автономный округ	Горная полярная пустыня	-369	10	0
	Горная тундра	-823	62	0
	Арктическая тундра	-290	43	2
	Типичная тундра	-1624	84	3
	Дальневосточная типичная тундра	-91	84	3
	Лесотундра	-10745	123	6

Таблица 28.3. Коэффициенты выбросов (+) и поглощения (-) парниковых газов для степей по субъектам Российской Федерации

Субъект Российской Федерации	Диоксид углерода, кг СО ₂ га −1	Метан, кг СН ₄ га−1 год−1	Закись азота, кг N_2 О га $^{-1}$ год $^{-1}$
------------------------------	--	--	---

	год-1		
Республика Адыгея (Адыгея)	-14740	-2	0
Республика Алтай	-7223	-3	-0,08
Республика Башкортостан	1833	-2,9	-0,07
Республика Бурятия	-9460	-3	-0,07
Республика Дагестан	-73	-3	-0,08
Республика Ингушетия	1503	-3,3	-0,11
Кабардино-Балкарская Республика	-4547	-2,8	-0,08
Республика Калмыкия	-2273	-3	-0,07
Карачаево-Черкесская Республика	-2640	-3,1	-0,08
Республика Крым	-1283	-3	-0,08
Республика Северная Осетия - Алания	-2787	-3,3	-0,08
Республика Татарстан (Татарстан)	-6747	-3,1	-0,08
Республика Тыва	-4987	-3	-0,07
Республика Хакасия	-13640	-3	-0,07
Чеченская Республика	1503	-3	-0,07
Алтайский край	-10670	-3	-0,07
Астраханская область	-8690	-3	-0,07
Белгородская область	-4767	-2,9	-0,06
Волгоградская область	-7517	-3	-0,07
Воронежская область	-11550	-2,9	-0,06
Забайкальский край	-16940	-3	-0,07
Иркутская область	-10817	-3	-0,07
Кемеровская область	-15767	-3	-0,07
Краснодарский край	550	-3,1	-0,08
Красноярский край	-13860	-3	-0,07
Курганская область	-16390	-3	-0,08
Курская область	-10890	-2,9	-0,08
Липецкая область	-2897	-3	-0,1
Новосибирская область	-14997	-3	-0,07
Омская область	-18077	-3	-0,07

Оренбургская область	-13457	-3	-0,07
Орловская область	-8617	-3	-0,07
Пензенская область	-4767	-3	-0,08
Ростовская область	-8690	-3	-0,07
Самарская область	-4840	-2,9	-0,07
Саратовская область	-9717	-3	-0,07
Ставропольский край	-623	-2,9	-0,08
Тамбовская область	-13860	-3	-0,07
Тульская область	-8397	-3	-0,07
Тюменская область	-16683	-3,1	-0,07
Ульяновская область	-2053	-2,9	-0,07
Челябинская область	-15143	-3	-0,07

Таблица 28.4. Коэффициенты выбросов (+) и поглощения (-) парниковых газов для болотных экосистем по субъектам Российской Федерации

Субъекты Российской Федерации	Метан, кг СН ₄ га−1 год−1	Закись азота, кг N_2 О га $^{-1}$ год $^{-1}$	Диоксид углерода, кг СО ₂ га−1 год−1
Республика Алтай	66	0,1	-2270
Республика Башкортостан	188,4	0,27	-6500
Республика Бурятия	482	0,54	-15580
Республика Дагестан	507,6	0,84	-17500
Республика Карелия	139,2	0,13	-4880
Республика Коми	230	0,1	-6530
.Республика Марий Эл	1191,2	1,68	-40880
Республика Саха (Якутия)	175,2	0,17	-5420
Республика Татарстан (Татарстан)	127,6	0,2	-4400
Республика Тыва	32,4	0,03	-1090
Удмуртская Республика	1720	2,38	-59430
Республика Хакасия	40	0,1	-1410
Чувашская Республика - Чувашия	1248	2,01	-43000

Алтайский край	195,6	0,27	-6740
Амурская область	252	0,3	-8890
Архангельская область	187,6	0,1	-5740
Астраханская область	795,6	1,14	-27420
Брянская область	554,8	0,81	-19130
Владимирская область	1182,8	1,54	-40920
Вологодская область	320	0,37	-11070
Еврейская автономная область	297,2	0,5	-10510
Забайкальский край	152,4	0,17	-4840
Ивановская область	375,6	0,4	-13160
Иркутская область	428,4	0,54	-14330
Калининградская область	345,2	0,44	-12030
Калужская область	392,8	0,47	-13360
Камчатский край	215,6	0,13	-7280
Кемеровская область	29,6	0,03	-1020
Кировская область	1636,8	2,28	-56160
Костромская область	781,2	0,84	-27130
Краснодарский край	844	1,21	-29100
Красноярский край	117,2	0,1	-3490
Курганская область	13,6	0,03	-480
Ленинградская область	224,8	0,17	-7620
Магаданская область	191,6	0,23	-6340
Московская область	1561,6	1,68	-53240
Мурманская область	28,4	0	-860
Ненецкий автономный округ	116,4	0,07	-3040
Нижегородская область	589,2	0,84	-20270
Новгородская область	245,6	0,23	-8690
Новосибирская область	300,4	0,44	-10490
Омская область	303,6	0,37	-9780
Орловская область	30	0	-1250
Пермский край	394,4	0,34	-13410

Приморский край	137,6	0,2	-4750
Псковская область	224	0,27	-7880
Ростовская область	138,4	0,2	-4760
Рязанская область	961,6	0,94	-32570
Санкт-Петербург	304	0	-7600
Сахалинская область	353,2	0,2	-10380
Свердловская область	321,6	0,3	-9570
Смоленская область	766,8	1,07	-26280
Тверская область	255,2	0,23	-8720
Томская область	259,6	0,27	-7660
Тюменская область	315,2	0,3	-8950
Хабаровский край	209,2	0,23	-7340
Ханты-Мансийский автономный округ - Югра	224,4	0,17	-4410
Челябинская область	8,4	0,03	-300
Чукотский автономный округ	754	0,27	-20580
Ямало-Ненецкий автономный округ	348,4	0,07	-7780
Ярославская область	272,8	0,34	-9600
	1		

Таблица 28.5. Коэффициенты выбросов (+) и поглощения (-) парниковых газов для пресноводных экосистем по субъектам Российской Федерации

Субъекты Российской Федерации	Водоемы со стоячей водой		Ручьи, реки	
	Метан, кг СН ₄ га−1 год−1	Диоксид углерода, кг СО ₂ га−1 год−1	Метан, кг СН ₄ га−1 год−1	Диоксид углерода, кг СО ₂ га−1 год−1
Республика Адыгея (Адыгея)	14	2438	27	6826
Республика Алтай	8	1436	16	4021
Республика Башкортостан	8	1436	16	4021
Республика Бурятия	4,7	834,8	9,3	2338
Республика Дагестан	14	2438	27	6826
Республика Ингушетия	14	2438	27	6826
Кабардино-Балкарская Республика	14	2438	27	6826

Республика Калмыкия	9,1	1636	18	4582
Карачаево-Черкесская Республика	14	2438	27	6826
Республика Карелия	8	1436	16	4021
Республика Коми	8	1436	16	4021
Республика Крым и Севастополь	14	2438	27	6826
Республика Марий Эл	8	1436	16	4021
Республика Мордовия	8	1436	16	4021
Республика Саха (Якутия)	4,7	834,8	9,3	2338
Республика Северная Осетия - Алания	14	2438	27	6826
Республика Татарстан (Татарстан)	8	1436	16	4021
Республика Тыва	5,8	1035	12	2899
Республика Хакасия	8	1436	16	4021
Удмуртская Республика	8	1436	16	4021
Чеченская Республика	14	2438	27	6826
Чувашская Республика - Чувашия	8	1436	16	4021
Алтайский край	8	1436	16	4021
Амурская область	5,8	1035	12	2899
Архангельская область	8	1436	16	4021
Астраханская область	9,1	1636	18	4582
Белгородская область	8	1436	16	4021
Брянская область	8	1436	16	4021
Владимирская область	8	1436	16	4021
Волгоградская область	9,1	1636	18	4582
Вологодская область	8	1436	16	4021
Воронежская область	8	1436	16	4021
Еврейская автономная область	5,8	1035	12	2899
Забайкальский край	4,7	834,8	9,3	2338
Ивановская область	8	1436	16	4021
Иркутская область	4,7	834,8	9,3	2338
Калининградская область	8	1436	16	4021
Калужская область	8	1436	16	4021

Камчатский край	5,8	1035	12	2899
Кемеровская область	8	1436	16	4021
Кировская область	8	1436	16	4021
Костромская область	8	1436	16	4021
Краснодарский край	14	2438	27	6826
Красноярский край	8	1436	16	4021
Курганская область	8	1436	16	4021
Курская область	8	1436	16	4021
Ленинградская область	8	1436	16	4021
Липецкая область	8	1436	16	4021
Магаданская область	4,7	834,8	9,3	2338
Московская область	8	1436	16	4021
Мурманская область	6,9	1236	14	3460
Ненецкий автономный округ	8	1436	16	4021
Нижегородская область	8	1436	16	4021
Новгородская область	8	1436	16	4021
Новосибирская область	8	1436	16	4021
Омская область	8	1436	16	4021
Оренбургская область	8	1436	16	4021
Орловская область	8	1436	16	4021
Пензенская область	8	1436	16	4021
Пермский край	8	1436	16	4021
Приморский край	8	1436	16	4021
Псковская область	8	1436	16	4021
Ростовская область	9,1	1636	18	4582
Рязанская область	8	1436	16	4021
Самарская область	8	1436	16	4021
Саратовская область	8	1436	16	4021
Сахалинская область	6,9	1236	14	3460
Свердловская область	8	1436	16	4021
Смоленская область	8	1436	16	4021

	1			
Ставропольский край	9,1	1636	18	4582
Тамбовская область	8	1436	16	4021
Тверская область	8	1436	16	4021
Томская область	8	1436	16	4021
Тульская область	8	1436	16	4021
Тюменская область	8	1436	16	4021
Ульяновская область	8	1436	16	4021
Хабаровский край	6,9	1236	14	3460
Ханты-Мансийский автономный округ - Югра	6,9	1236	14	3460
Челябинская область	8	1436	16	4021
Чукотский автономный округ	4,7	834,8	9,3	2338
Ямало-Ненецкий автономный округ	8	1436	16	4021
Ярославская область	8	1436	16	4021